

Kontinuumsmechanik

Sommersemester 2011

Lösungsvorschlag zur Klausur vom 22.07.2011

Lösungsvorschlag

Theorieaufgaben

[10 Punkte]

Aufgabe T1

[1 Punkt]

Die Lösung der eindimensionalen Wellengleichung nach d'Alembert hat die Gestalt

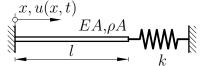
$$w(x,t) = g(x-ct) + h(x+ct).$$

Welche der folgenden Ausdrücke beschreibt eine in die negative x-Richtung laufende Welle?

Aufgabe T2

[2 Punkte]

Geben Sie den Rayleigh-Quotienten R für die Stablängsschwingungen des skizzierten Systems an. Verwenden Sie U(x) = x als zulässige Funktion.



Gegeben: EA, ρA , k, l, U(x) = x

$$R = \frac{\frac{1}{2} \int_0^l EA \, dx + \frac{1}{2} k l^2}{\frac{1}{2} \int_0^l \rho A x^2 \, dx} = 3 \frac{EA + kl}{\rho A l^2}$$
 (2)

Aufgabe T3

[2 Punkte]

Die vier skizzierten Euler-Bernoulli-Balken unterscheiden sich nur in der Art ihrer Lagerung. Die jeweils erste Eigenkreisfrequenz der Systeme ist $\omega_{A,B,C,D}$. Kreuzen Sie die richtige(n) Aussage(n) an.

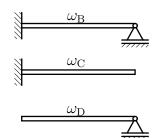
 $\omega_{\rm A} < \omega_{\rm B}$

 $\left[f{X} \right] \quad \omega_{
m D} = 0 \, \left[f{1} \right]$

 $\omega_{\mathrm{B}} > \omega_{\mathrm{C}}$ (1)

 $\omega_{\rm B} = \omega_{\rm C} + \omega_{\rm D}$

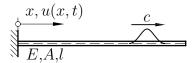
 $\omega_{\rm C} > \omega_{\rm A}$



Aufgabe T4

[1 Punkt]

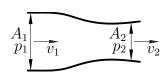
In dem skizzierten Stab (E-Modul E, Wellenausbreitungsgeschwindigkeit c, Querschnittsfläche A, Länge l) läuft die Welle u(x,t) auf das rechte freie Ende zu. Geben Sie die Normalspannung $\sigma(l,t)$ am rechten Ende an.



$$\sigma(l,t) = 0$$
 1

Aufgabe T5 [2 Punkte]

Eine ideale Flüssigkeit (Dichte ρ) strömt durch ein Rohr mit variabler Querschnittsfläche. An einer Stelle mit der Querschnittsfläche A_1 hat die Flüssigkeit den Druck p_1 und die Geschwindigkeit v_1 . Bestimmen Sie die Geschwindigkeit v_2 und den Druck p_2 an der Stelle mit der Querschnittsfläche A_2 .



Gegeben: A_1 , A_2 , p_1 , v_1 , ρ

Nebenrechnung:

$$A_1 v_1 = A_2 v_2$$

$$\frac{1}{2} \rho v_1^2 + p_1 = \frac{1}{2} \rho v_2^2 + p_2$$

$$v_2 = v_1 \frac{A_1}{A_2}$$

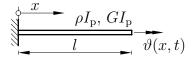
$$p_2 = p_1 + \frac{1}{2}\rho v_1^2 \left(1 - \frac{A_1^2}{A_2^2}\right)$$
 1

Aufgabe T6 [1 Punkt]

Wie lauten die Randbedingungen für den skizzierten Torsionsstab?

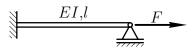
Randbedingungen:

$$\vartheta(0,t) = 0$$
 $\vartheta'(l,t) = 0$ oder $GI_p\vartheta'(l,t) = 0$ 1



Aufgabe T7 [1 Punkt]

Welchen Einfluss hat eine konstante positive Vorspannkraft F auf die Eigenfrequenzen der Biegeschwingungen des skizzierten Systems? Kreuzen Sie an.

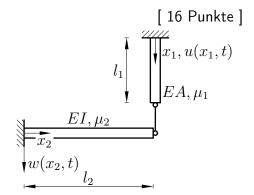


Die Eigenfrequenzen werden durch die Vorspannkraft	kleiner	nicht verändert	größer
			X

Aufgabe 1

Das skizzierte System besteht aus einem homogenen Dehnstab (Dehnsteifigkeit EA, Massenbelegung μ_1 , Länge l_1) und einem homogenen Balken (Biegesteifigkeit EI, Massenbelegung μ_2 , Länge l_2 , schlank und dehnstarr), die über eine starre Stange (Masse vernachlässigbar) verbunden sind.

Gegeben: $EA, EI, \mu_1, \mu_2, l_1, l_2$



Geben Sie die Bewegungsgleichungen (Feldgleichungen) für den Dehnstab und den Balken in Abhängigkeit der gegeben Größen an.

Bewegungsgleichungen:

Dehnstab:

$$\mu_1 \ddot{u}(x_1, t) - EAu''(x_1, t) = 0$$

Balken:

$$\mu_2 \ddot{w}(x_2, t) + EIw^{IV}(x_2, t) = 0$$

b) Geben Sie alle Rand- und Übergangsbedingungen des Systems an. (Hinweis: Zeichnen Sie ggf. ein Freikörperbild.)

Nebenrechnung, ggf. Freikörperbild:

$$Q = -EIw'''(l_2, t)$$

Rand- und Übergangsbedingungen:

$$u(0,t) = 0$$
 (1)

$$w(0,t) = 0$$

$$w'(0,t) = 0$$
 1

$$EIw''(l_2,t) = 0$$

$$u(0,t) = 0$$
 1 $w(0,t) = 0$ 1 $w'(0,t) = 0$ 1 $w'(0,t) = 0$ 1 $EIw''(l_2,t) = 0$ 1 $w(l_2,t) = 0$ 1 $w(l_2,t) = 0$ 1 $w(l_2,t) = 0$ 1

$$w(l_2,t) = u(l_1,t)$$
 (1)

c) Die erste Eigenkreisfrequenz ω_1 soll mit Hilfe des Rayleigh-Quotienten abgeschätzt werden. Welche Bedingungen müssen die Ansatzfunktionen $U(x_1)$ und $W(x_2)$ erfüllen?

Bedingungen für $U(x_1)$ und $W(x_2)$:

$$U(0) = 0$$

$$W(0) = 0$$

$$W'(0) = 0$$

$$U(0) = 0$$
 $W(0) = 0$ $W'(0) = 0$ $U(l_1) = W(l_2)$ 1

Wie lautet der Rayleigh-Quotient $R[U(x_1), W(x_2)]$ des Systems? Drücken Sie das Ergebnis nur in den gegebenen Größen sowie $U(x_1)$, $W(x_2)$ und deren Ableitungen aus.

Nebenrechnung:

$$T[\dot{u}(x_1,t),\dot{w}(x_2,t)] = \frac{1}{2} \int_0^{l_1} \mu_1 \dot{u}^2(x_1,t) dx_1 + \frac{1}{2} \int_0^{l_2} \mu_2 \dot{w}^2(x_2,t) dx_2$$
 2

$$U[u(x_1,t),w(x_2,t)] = \frac{1}{2} \int_0^{l_1} EAu'^2(x_1,t) dx_1 + \frac{1}{2} \int_0^{l_2} EIw''^2(x_2,t) dx_2$$
 2

$$R[U(x_1), W(x_2)] = \frac{U[U(x_1), W(x_2)]}{T[U(x_1), W(x_2)]}$$

$$R[U(x_1), W(x_2)] = \frac{\int_0^{l_1} EA U'^2(x_1) dx_1 + \int_0^{l_2} EI W''^2(x_2) dx_2}{\int_0^{l_1} \mu_1 U^2(x_1) dx_1 + \int_0^{l_2} \mu_2 W^2(x_2) dx_2}$$
 (1)

Kreuzen Sie die richtige(n) Aussage(n) bezüglich des Rayleigh-Quotienten $R[U(x_1), W(x_2)]$ und der ersten Eigenkreisfrequenz ω_1 des Systems an, wenn $U(x_1)$ und $W(x_2)$ die unter c) gefragten Bedingungen erfüllen.

$$\omega_1^2 > R[U(x_1), W(x_2)]$$

$$\omega_1^2 = R[U_1(x_1), W_1(x_2)] \quad \text{falls } U_1(x_1), W_1(x_2) \text{ erste Eigenform des Systems } \mathbf{1}$$

$$\omega_1^2 \leq R[U(x_1), W(x_2)] \quad \mathbf{1}$$

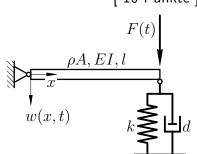
$$\omega_1^2 \le R[U(x_1), W(x_2)]$$

MMD - Sommersemester 2011

Aufgabe 2

[10 Punkte]

Der skizzierte Euler-Bernoulli-Balken ($\rho A,\ EI,\ l$) ist links gelagert und rechts über eine Feder (Steifigkeit k) sowie einen Dämpfer (Dämpfungskonstante d) abgestützt. Am Ende des Balkens wirkt zusätzlich die Kraft F(t).



Gegeben: ρA , EI, l, k, d, F(t)

a) Geben Sie die kinetische Energie T des Systems an.

Nebenrechnung:

$$T = \frac{1}{2} \int_0^l \rho A \dot{w}^2(x, t) \mathrm{d}x$$

b) Geben Sie die potentielle Energie U des Systems an.

Nebenrechnung:

$$U = \frac{1}{2} \int_0^l EIw''^2(x,t) dx + \frac{1}{2} kw^2(l,t)$$
 1

c) Geben Sie die virtuelle Arbeit δW der nicht in Uberücksichtigten Kräfte an.

Nebenrechnung:

$$\delta W = F(t)\delta w(l,t) - d\dot{w}(l,t)\delta w(l,t)$$
 1

d) Geben Sie alle geometrischen Randbedingungen an.

geometrische Randbedingungen:

$$w(0,t) = 0$$
 1

e) Wie lautet allgemein das Prinzip von Hamilton für das System? Setzten Sie T, U und δW als gegeben voraus.

Prinzip von Hamilton für das System mit $T,\,U$ und δW gegeben:

$$\delta \int_{t_1}^{t_2} (T - U) \mathrm{d}t = -\int_{t_1}^{t_2} \delta W \mathrm{d}t \ \mathbf{1}$$

f) Nach Ausführen der Variation und partieller Integration liefert das Prinzip von Hamilton für das gegebene System den Ausdruck

$$\begin{split} &\int_{t_1}^{t_2} \Biggl\{ \int_0^l \Bigl(-\rho A \ddot{w}(x,t) - E I w^{\text{IV}}(x,t) \Bigr) \delta w(x,t) \, \, \mathrm{d}x + \Bigl(F(t) - k w(l,t) - d \dot{w}(l,t) \Bigr) \delta w(l,t) \\ &+ \left[E I w'''(x,t) \delta w(x,t) - E I w''(x,t) \delta w'(x,t) \right]_0^l \Biggr\} \mathrm{d}t + \left[\int_0^l \rho A \dot{w}(x,t) \delta w(x,t) \mathrm{d}x \right]_{t_1}^{t_2} = 0. \end{split}$$

Geben Sie damit die Bewegungsgleichung (Feldgleichung) des Systems und die natürlichen (dynamischen) Randbedingungen an.

Bewegungsgleichung:

$$\rho A\ddot{w}(x,t) + EIw^{IV}(x,t) = 0$$
 1

natürliche Randbedingungen:

$$F(t) - kw(l,t) - d\dot{w}(l,t) + EIw'''(l,t) = 0$$

$$EIw''(0,t) = 0$$

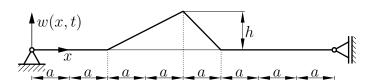
$$EIw''(l,t) = 0$$

g) Kreuzen Sie die richtige(n) Aussage(n) an.

X	Konservative Lasten können entweder über ihr Potential oder ihre virtuelle Arbeit berücksichtigt werden. \bigcirc
	Das Prinzip von Hamilton ist nicht anwendbar, wenn verteilte nichtkonservative Lasten auftreten.
	Bei nichtkonservativen Systemen liefert das Prinzip von Hamilton nur eine obere Schranke für die erste Eigenkreisfrequenz.

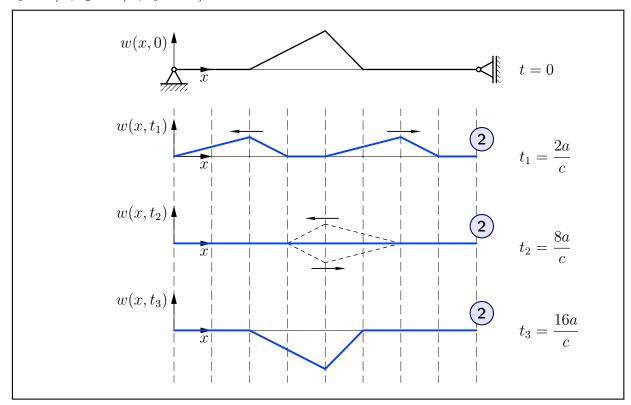
Aufgabe 3 [9 Punkte]

Die fest-frei gelagerte Saite (Wellenausbreitungsgeschwindigkeit c, Länge 8a) hat die skizzierte Anfangsauslenkung und keine Anfangsgeschwindigkeit ($\dot{w}(x,0)=0$).



Gegeben: c, a

a) Vervollständigen Sie das Bild, indem Sie die Auslenkung der Saite zu den Zeitpunkten $t_1 = 2a/c$, $t_2 = 8a/c$, $t_3 = 16a/c$ einzeichnen.



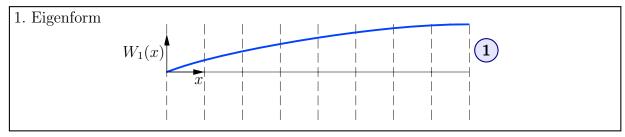
b) Nach welcher Zeit T nimmt die Saite erstmals wieder den Anfangszustand ein?

$$T = \frac{32a}{c}$$
 1

c) Geben Sie die erste Eigenkreisfrequenz ω_1 des Systems an.

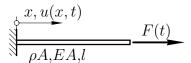
$$\omega_1 = \frac{2\pi}{T} = \frac{\pi c}{16a}$$

d) Skizzieren Sie die erste Eigenform $W_1(x)$ des Systems.



Aufgabe 4 [5 Punkte]

Der skizzierte Dehnstab ($\rho A, EA, l$) wird am rechten Ende durch die Kraft F(t) zu Schwingungen angeregt.



Gegeben: ρA , EA, l, F(t)

a) Geben Sie die Bewegungsgleichung (Feldgleichung) für den Dehnstab in Abhängigkeit der gegeben Größen an.

Bewegungsgleichung:

$$\rho A\ddot{u}(x,t) - EAu''(x,t) = 0$$
 1

b) Geben Sie alle Randbedingungen an.

Nebenrechnung, Skizze:

$$EAu'(l,t)$$
 \longrightarrow $F(t)$

Randbedingungen:

$$u(0,t) = 0$$

$$EAu'(l,t) = F(t)$$

c) Die Kraft $F(t) = \hat{F} \cos \Omega t$ sei nun harmonisch (Ω gegeben). Machen Sie einen Ansatz zur Berechnung der eingeschwungenen Bewegung $u_{\rm P}(x,t)$ des System.

$$u_{\rm P}(x,t) = U(x)\cos\Omega t$$
 1

d) Gibt es Erregerkreisfrequenzen Ω^* , für die das rechte Ende des Dehnstabs trotz der Anregung $F(t) = \hat{F} \cos \Omega^* t$ in Ruhe bleiben kann? Kreuzen Sie an <u>und begründen</u> Sie ihre Antwort!

Das ist nicht möglich.

Es gibt genau ein Ω^* .

X Es gibt unendlich viele Ω^* . 2

Begründung:

Für alle Erregerkreisfrequenzen Ω^* , die Eigenkreisfrequenzen des fest-fest gelagerten Dehnstabs sind, kann das rechte Ende des Dehnstabs bei geeigneten Anfangsbedingungen in Ruhe bleiben.

Punkte nur bei schlüssiger Begründung und richtigem Kreuz.