

Kontinuumsmechanik

Sommersemester 2017

Klausur vom 28.07.2017

Name			Vorname					
Studiengang			Matrikelnum	nmer				
Es ist erlaubt, eine handgeschriebene Formelsammlung im Umfang eines einseitig beschriebenen DIN A4-Blattes zu benutzen. Andere Hilfsmittel sind nicht erlaubt. Es wird ausdrücklich darauf hingewiesen, dass keinerlei elektronische Hilfsmittel benutzt werden dürfen. Hierzu zählen insbesondere Taschenrechner, Laptops und Handys. Ich bestätige meine Prüfungsfähigkeit.								
Unterschrift								
Tragen Sie Nebenrechnu Kästen ein. Separat abgeg	_	_			ie dafür vor	gesehenen		
Aufgabe	Т	A1	A2	А3	A4	Σ		
Punkte								
Erreichte Punkte								
Handzeichen								

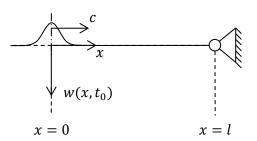
Theorieaufgaben

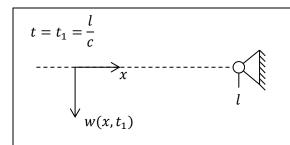
[10 Punkte]

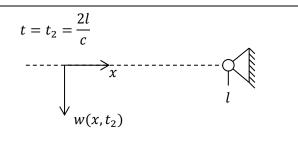
Aufgabe T1

[2 Punkte]

In einer Saite läuft die skizzierte Transversalwelle mit der Wellenausbreitungsgeschwindigkeit c auf das Lager bei x=l zu. Ihr Maximum ist zum Zeitpunkt $t_0=0$ bei x=0. Skizzieren Sie in den beiden unteren Diagrammen die Verschiebungen $w(x,t_1)$ mit $t_1=\frac{l}{c}$ bzw. $w(x,t_2)$ mit $t_2=\frac{2l}{c}$.







Aufgabe T2 [1 Punkt]

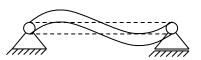
Die eindimensionale Wellengleichung $\ddot{w}(x,t)-c^2w''(x,t)=0$ besitzt die Lösung $w(x,t)=f_1(x-ct)+f_2(x+ct)$. Was beschreibt der Ausdruck $f_2(x+ct)$ dabei anschaulich? Kreuzen Sie alle richtigen Antworten an.

eine mit der Geschwindigkeit c in negative x-Richtung laufende Welle
 eine mit der Geschwindigkeit c in positive x-Richtung laufende Welle
 eine Schwingung mit steigender Amplitude
 eine Schwingung mit fallender Amplitude

Aufgabe T3 [1 Punkt]

Der skizzierte Balken besitzt die niedrigsten drei Eigenfrequenzen 100 Hz, 400 Hz und 900 Hz. Ordnen Sie die jeweiligen Eigenfrequenzen den unten abgebildeten Schwingformen zu.

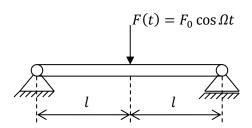




f =	f =	f =

Aufgabe T4 [1 Punkt]

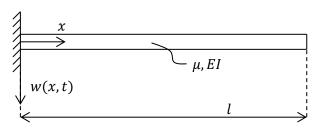
Gegeben ist der rechts skizzierte statisch bestimmt gelagerte homogene Euler-Bernoulli-Balken mit konstantem Querschnitt, welcher mittig mit der Einzellast $F(t) = F_0 \cos \Omega t$ zu Schwingungen angeregt wird. Kreuzen Sie alle wahren Aussagen an.



Wenn die Erregerkreisfrequenz $arOmega$ gleich der ersten Eigenkreisfrequenz $arOmega_1$ ist, tritt
Resonanz auf.
Wenn die Erregerkreisfrequenz $arOmega$ gleich der zweiten Eigenkreisfrequenz $arOmega_2$ ist, tritt
Resonanz auf.
eine Erhöhung der Amplitude F_0 führt zu einer Erhöhung der Eigenkreisfrequenz ω_1
eine Erhöhung der Amplitude F_0 führt zu einer Verringerung der Eigenkreisfrequenz ω_1

Aufgabe T5 [1 Punkt]

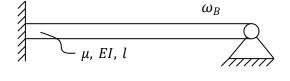
Gegeben ist der skizzierte Euler Bernoulli Balken mit einer festen Einspannung bei x=0 und der Länge l. Unter Verwendung des Rayleigh-Quotienten soll eine Abschätzung für die erste Eigenkreisfrequenz der Biegeschwingung gemacht werden. Geben Sie eine zulässige Ansatzfunktion $\widetilde{W}_1(x)$ an

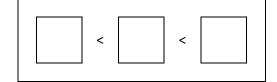


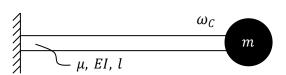
$$\widetilde{W}_1(x) =$$

Aufgabe T6 [1 Punkt]

Die drei skizzierten Euler-Bernoulli-Balken unterscheiden sich lediglich in ihren Randbedingungen. Die zu jedem System gehörende erste Eigenkreisfrequenz sei jeweils ω_A, ω_B bzw. ω_C . Sortieren Sie diese nach Ihrer Größe.

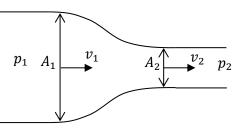






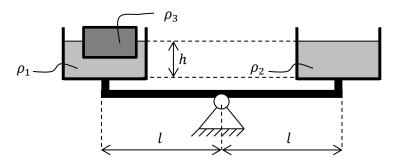
Aufgabe T7 [1 Punkt]

Eine ideale Flüssigkeit strömt durch ein Rohr mit variablem Querschnitt $A_1>A_2$. Kreuzen Sie alle richtigen Aussagen an.



Aufgabe T8 [2 Punkte]

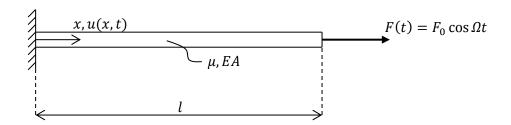
Die unten skizzierte Waage befindet sich im Gleichgewicht. Beide Behälter sind identisch und mit Flüssigkeiten (Dichte ρ_1 bzw. ρ_2) mit gleichem Füllstand h gefüllt. Im linken Behälter schwimmt zusätzlich ein Körper mit der Dichte ρ_3 .



Kreuzen Sie alle richtigen Aussagen an.

\square $\rho_1 < \rho_3$	\square $\rho_1 > \rho_3$	
\square $\rho_1 < \rho_2$	\square $\rho_1 > \rho_2$	\square $\rho_1 = \rho_2$

Aufgabe 1 [12 Punkte]



Gegeben ist der wie skizziert gelagerte Stab (Masse pro Länge $\mu=\rho A$, Dehnsteifigkeit EA, Länge l), der durch die Kraft $F(t)=F_0\cos\Omega t$ zu Längsschwingungen u(x,t) angeregt wird.

Gegeben: $A, E, l, \rho, F_0, \Omega$

a) Geben Sie die Feldgleichung und die Randbedingungen an (Herleitung ist nicht notwendig).

Ergebnis:			

b) Bestimmen Sie für $F(t)\equiv 0$ die Eigenkreisfrequenzen ω_k und die Eigenformen $U_k(x)$ des Stabs.

Rechnung:			

$\omega_k =$	$U_k(x) =$

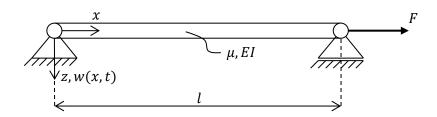
$u_{\mathrm{p}}(x,t)=U_{\mathrm{p}}(x)\cos\Omega t$ eine Lösung für die Zwangsschwingungen.	
Rechnung:	

c) F(t) sei nun mit $F(t) = F_0 \cos \Omega t$ gegeben. Bestimmen Sie mit dem Ansatz

Kontinuumsmechanik

Klausur vom 28.07.2017

Aufgabe 2 [8 Punkte]



Gegeben ist der skizzierte mit der Kraft F vorgespannte Balken (Masse pro Länge μ , Biegesteifigkeit EI, Länge l). Seine Feldgleichung ist

$$\mu \ddot{w}(x,t) + EIw^{IV}(x,t) - Fw^{II}(x,t) = 0$$

Gegeben: μ, EI, l, F

a) Geben Sie die Randbedingungen an.

Ergebnis:			

b) Mit der Funktion $\widetilde{W}_1(x)=\sin\left(\pi\frac{x}{l}\right)$ soll eine Näherung für die erste Eigenkreisfrequenz mit Hilfe des Rayleigh-Quotienten bestimmt werden. Zeigen Sie, dass $\widetilde{W}_1(x)$ eine zulässige Funktion ist.

Ergebnis:			

c) Gegeben sei nun der Rayleigh-Quotient mit

$$\widetilde{\omega}_1^2 = \frac{\int_0^l \left(EI\widetilde{W}_1^{\prime\prime}^2(x) + F\widetilde{W}_1^{\prime 2}(x) \right) \mathrm{d}x}{\int_0^l \mu \widetilde{W}_1^2(x) \mathrm{d}x}.$$

Bestimmen Sie $\widetilde{\omega}_1$ unter Verwendung der Ansatzfunktion $\widetilde{W}_1(x) = \sin\left(\pi \frac{x}{l}\right)$.

Hinweis:

1)
$$\int \sin^2(\alpha) d\alpha = \frac{1}{2} (\alpha - \sin(\alpha) \cos(\alpha)) = \frac{1}{2} \left(\alpha - \frac{1}{2} \sin(2\alpha) \right)$$

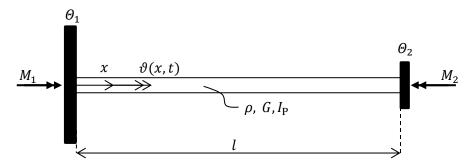
2)
$$\int \cos^2(\alpha) d\alpha = \frac{1}{2} (\alpha + \sin(\alpha) \cos(\alpha)) = \frac{1}{2} \left(\alpha + \frac{1}{2} \sin(2\alpha) \right)$$

Rechnung:	
$\widetilde{\omega}_1 =$	

d) Bestimmen Sie mit dem Ergebnis aus c) die zugehörige Knicklast $\tilde{F}_{
m krit}.$

Rechnung:		
ñ		
$ ilde{F}_{ m krit} =$		

Aufgabe 3 [9 Punkte]



Das skizzierte Modell eines Antriebsstrangs besteht aus zwei diskreten Drehmassen (starre Körper, Massenträgheitsmoment θ_1 bzw. θ_2 bezüglich der Drehachse) sowie dem dargestellten Torsionsstab (Dichte ρ , Schubmodul G, polares Flächenträgheitsmoment $I_{\rm P}$, Länge l). Er wird bei x=0 mit dem Moment M_1 und bei m_1 mit dem Moment m_2 belastet. Mit dem **Prinzip von Hamilton** sollen die Feldgleichung sowie die dynamischen Randbedingungen bestimmt werden.

Gegeben: ρ , G, I_P , l, M_1 , M_2 , Θ_1 , Θ_2 ,

a) Geben Sie die kinetische Energie ${\cal T}$ und die potentielle Energie ${\cal U}$ des Systems an.

<u>Hinweis:</u> Für einen starren Körper mit der Winkelgeschwindigkeit ω und dem Massenträgheitsmoment θ bezüglich der Drehachse ist die kinetische Energie $T=\frac{1}{2}\theta\omega^2$.

$$T =$$

$$U =$$

b) Formulieren Sie die virtuelle Arbeit δW der potentiallosen Kräfte und Momente.

 $\delta W =$

c) Existieren geometrische Randbedingungen? Wenn ja, geben Sie diese an.

Ergebnis:

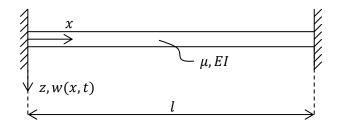
Randbedingung(en).	
Rechnung:	

d) Bestimmen Sie mit dem **Prinzip von Hamilton** die Feldgleichung sowie die dynamische(n)

Rechnung:	

Rechnung:	
Foldgleichung	
Feldgleichung:	
dynamische Randbedingung(en):	

Aufgabe 4 [11 Punkte]



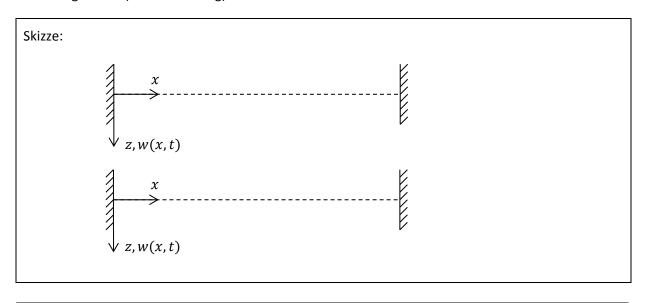
Gegeben ist der skizzierte, beidseitig fest eingespannte Euler-Bernoulli-Balken (Masse pro Länge μ , Biegesteifigkeit EI, Länge l)

Gegeben: μ, ΕΙ, l

a) Geben Sie die Feldgleichung und die Randbedingungen an.

eldgleichung:	
andbedingungen:	

b) Skizzieren Sie die zwei Eigenformen, die zu den beiden niedrigsten Eigenkreisfrequenzen gehören (ohne Rechnung).



c) Setzen Sie den Ansatz $w(x,t) = W(x)\sin(\omega t)$ in die Feldgleichung ein, und bestimmen Sie die Differentialgleichung für W(x).

Rechnung:

Differentialgleichung:

d) Geben Sie die allgemeine Lösung für W(x) an. Verwenden Sie dabei die Abkürzung $\lambda^4 = \frac{\mu \omega^2}{EI}$

W(x) =

e) Berechnen Sie die Charakteristische Gleichung für die Bestimmung von λ durch Anpassen der allgemeinen Lösung an die Randbedingungen.

Hinweise:

- 1) $1 = \sin^2(\alpha) + \cos^2(\alpha)$ $1 = \cosh^2(\alpha) \sinh^2(\alpha)$
- 2) Ein lineares Gleichungssystem der Form $\underline{A}\vec{r}=\vec{0}$ hat dann nichttriviale Lösungen, wenn die Determinante von \underline{A} Null ist.

Rechnung:

Rechnung:		
Charakteristische Gleichung:		
3 3 6		