Technische Universität Berlin

Fakultät II – Institut für Mathematik Faermann, Steinbach

SS 02 24. 07.2002

Juli – Klausur (Verständnisteil) Lineare Algebra für Ingenieure

Name:					
Neben einem handbeschriebenen Din-A4 Blatt zugelassen.	t mit N	otizen	sind ke	ine Hil	fsmittel
Bei jeglichem Täuschungsversuch gilt die Klar	usur al	s nicht	t besta	nden.	
Die Lösung jeder Aufgabe ist in Reinschrift abzugeben. Mit Bleistift geschriebene Klausun		_	-		
Dieser Teil der Klausur umfasst die Verständn Rechenaufwand mit den Kenntnissen aus der wenn nichts anderes gesagt ist, immer eine ku	Vorles	ung lös	sbar se	in. Gel	_
Die Bearbeitungszeit beträgt eine Stunde .					
Die Gesamtklausur ist mit 32 von 80 Punkt beiden Teile der Klausur mindestens 10 von 4					
Korrektur					
	1	2	3	4	Σ
					1

1. Aufgabe

12 Punkte

Sei eine lineare Abbildung A auf dem \mathbb{C}^3 gegeben durch die Matrix

$$A := \begin{pmatrix} b & c & 0 \\ -c & b & 0 \\ 0 & 0 & i \end{pmatrix} , \qquad b, c \in \mathbb{R} , \quad i = \sqrt{-1} .$$

(i) Zeigen Sie folgende Gleichung für das charakteristische Polynom:

$$det(A - \lambda E) = (i - \lambda) (\lambda - b + ic) (\lambda - b - ic).$$

- (ii) Was sind die Eigenwerte von A?
- (iii) Für welche Werte der Parameter b, c hat A weniger als drei verschiedene Eigenwerte?
- (iv) Für welche Werte der Parameter b, c hat A nur einen Eigenwert?

2. Aufgabe

8 Punkte

Betrachten Sie folgende Differentialgleichung:

$$\frac{d^2x}{dt^2} + 4x = \sin(t) .$$

Ohne Angabe einer Begründung, kreuzen Sie Zutreffendes an (richtige Antwort +2 Punkte, falsche Antwort 0 Punkte):

	wahr	falsch
$\cos(2t-\frac{\pi}{2})$ ist eine Lösung der homogenen Gleichung	0	0
Die Dimension des Lösungsraums der homogenen Gleichung ist 2	0	\bigcirc
Die Lösungsmenge der inhomogenen Gleichung ist ein Vektorraum	0	\circ
$\sin(2t)$ ist eine Lösung der inhomogenen Gleichung	0	0

3. Aufgabe

8 Punkte

Im Vektorraum der reellen 3×3 Matrizen seien gegeben

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (i) Ist die Matrix C eine Linearkombination der Matrizen A und B?
- (ii) Sind die drei Matrizen A,B,C linear unabhängig?
- (iii) Welche Dimension hat der von diesen drei Matrizen aufgespannte Vektorraum?

4. Aufgabe 12 Punkte

Gegeben seien die Vektoren

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,

sowie eine lineare Abbildung $L:\mathbb{R}^3 \to \mathbb{R}^2$ durch

$$L(\vec{v_1}) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $L(\vec{v_2}) = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$, $L(\vec{v_3}) = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$.

 $\it (i)$ Verifizieren Sie, dass die Abbildungsmatrix A von $\it L$ bezüglich der Standardba-

$$\operatorname{sen}\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\} \operatorname{von} \mathbb{R}^3 \operatorname{und}\left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\} \operatorname{vom} \mathbb{R}^2 \operatorname{gegeben}$$
ist durch

$$A := \left(\begin{array}{ccc} 0 & -2 & -2 \\ 1 & 0 & 2 \end{array}\right) .$$

- (ii) Geben Sie die Lösungen des homogenen Gleichungssystems $A\vec{x}=\vec{0}$ an.
- (iii) Welche Vektoren $\vec{x} \in \mathbb{R}^3$ werden durch L auf den Vektor $\begin{pmatrix} 4 \\ -2 \end{pmatrix}$ abgebildet?
- (iv) Bilden die Vektoren aus (ii) einen Unterraum des \mathbb{R}^3 ? Warum?