Technische Universität Berlin

Fakultät II – Institut für Mathematik Faermann, Steinbach

SS 02 09.10.2002

Oktober – Klausur (Verständnisteil) Lineare Algebra für Ingenieure

	Vorname: . Studiengang				
Neben einem handbeschriebenen Din-A-zugelassen.	4 Blatt mit N	lotizen	sind ke	eine Hil	fsmittel
Bei jeglichem Täuschungsversuch gilt di	e Klausur al	s nicht	besta	nden.	
Die Lösungen sind in Reinschrift auf geschriebene Klausuren können nicht g			geben.	Mit	Bleistift
Dieser Teil der Klausur umfasst die Vers Rechenaufwand mit den Kenntnissen au wenn nichts anderes gesagt ist, immer e	ıs der Vorles	sung lös	sbar se	in. Gel	_
Die Bearbeitungszeit beträgt eine Stur	nde.				
Die Gesamtklausur ist mit 32 von 80 beiden Teile der Klausur mindestens 10			,	•	
Korrektur					
	1	2	3	4	Σ

1. Aufgabe

10 Punkte

Gegeben sei eine lineare Abbildung A auf dem \mathbb{C}^3 dargestellt durch die Matrix

$$A := \left(\begin{array}{rrr} 0 & -2 & 2 \\ -1 & -1 & 1 \\ 1 & -1 & 1 \end{array} \right)$$

und 3 Eigenvektoren \vec{v}_1 , \vec{v}_2 und \vec{v}_3 von A:

$$\vec{v}_1 := \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 , $\vec{v}_2 := \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\vec{v}_3 := \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

- (i) Was sind die Eigenwerte von A?
- (ii) Sei ferner folgende invertierbare Matrix gegeben:

$$S := \left(\begin{array}{ccc} 6 & 3 & 5 \\ -2 & -1 & -2 \\ 1 & 1 & 1 \end{array} \right) ,$$

Was sind die Eigenwerte von $B := S^{-1}AS$? (Auch hier ist kein größerer Rechenaufwand erforderlich)

2. Aufgabe 10 Punkte

Sei $\vec{w} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in \mathbb{R}^3$. Kreuzen Sie an, welche der folgenden Abbildungen linear

Abbildungen auf dem Vektorraum \mathbb{R}^3 sind (richtige Antwort +2 Punkte, falsche Antwort -2 Punkte, Gesamtpunktzahl mindestens 0):

	linear	nicht
Translation (Verschiebung) um den Vektor \vec{w}	0	\circ
Rotation um x-Achse um π , gefolgt von Rotation um z-Achse um $\frac{\pi}{2}$	0	\circ
Rotation um x -Achse um π , gefolgt von Translation um \vec{w}	0	0
Spiegelung an der z -Achse	0	0
Projektion auf den von \vec{w} aufgespannten Unterraum	0	0

3. Aufgabe 10 Punkte

Betrachten Sie den Vektorraum $\mathbb{R}_2[x]$ der reellen Polynome höchstens zweiten Grades in x.

- (i) Sind die Polynome $Q_1(x) = 2x$ und $Q_2(x) = 2x^2$ linear abhängig?
- (ii) Sind die Polynome $P_1(x) = 2x$, $P_2(x) = 2x 1$ und $P_3(x) = 2$ linear abhängig?
- (iii) Falls möglich, schreiben Sie P_3 als Linearkombination von P_1 und P_2 .
- (iv) Was ist die Dimension des von P_1 , P_2 und P_3 aufgespannten Vektorraums?

4. Aufgabe 10 Punkte

Gegeben sei die Differentialgleichung

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0.$$

(i) Welche der folgende Funktionen sind Lösungen dieser Differentialgleichung?

$$y_1(x) = e^{-2x}, y_2(x) = e^{2x}, y_3(x) = xe^{-2x}.$$

- (ii) Sind die Funktionen y_1 , y_2 und y_3 linear unabhängig? (Begründung nicht vergessen!)
- (iii) Welche dieser Funktionen bilden ein Fundamentalsystem für obige Differentialgleichung?