Technische Universität Berlin

Fakultät II – Institut für Mathematik Lübbecke, Mehrmann, Nabben, Schwandt, Seiler $\begin{array}{c} \mathrm{WS}~04/05 \\ \mathrm{6.~April}~2005 \end{array}$

April – Klausur (Verständnisteil) Lineare Algebra für Ingenieure

Name:	Vorname:					• • • • • • • •
MatrNr.:	Studiengang	g:				
Neben einem handbeschriebenen A4 Blatt mit Not	izen sind keir	ne Hilfsn	nittel zu	gelasser	1.	
Die Lösungen sind in Reinschrift auf A4 Blätte können nicht gewertet werden.	ern abzugebe	n. Mit l	Bleistift	geschrie	ebene K	Ilausuren
Dieser Teil der Klausur umfasst die Verständnisaufg Kenntnissen aus der Vorlesung lösbar sein. Geben 3 Begründung an.			_			
Die Bearbeitungszeit beträgt eine Stunde.						
Die Gesamtklausur ist mit 40 von 80 Punkten bes mindestens 12 von 40 Punkten erreicht werden.	standen, wenr	n in jede	em der l	oeiden T	Teile der	Klausur
Korrektur						
		1	2	3	4	Σ

1. Aufgabe 9 Punkte

$$\text{Gegeben seien } A = \left[\begin{array}{ccc} 3 & -1 & 1 \\ -2 & 4 & 2 \\ -1 & 1 & 5 \end{array} \right] \quad \text{und} \quad \vec{u} = \left[\begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right], \vec{v} = \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right], \vec{w} = \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right], \vec{x} = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right].$$

- (a) Zeigen Sie, dass $\lambda_1 = 2$ Eigenwert zum Eigenvektor \vec{u} ist.
- (b) Zeigen Sie, dass \vec{v} Eigenvektor von A ist. Bestimmen Sie den zugehörigen Eigenwert λ_2 .
- (c) Sind die Vektoren \vec{w} und \vec{x} Eigenvektoren zum Eigenwert $\lambda_3 = 6$?
- (d) Geben Sie Matrizen S^{-1} und D an, so dass $A = S^{-1}DS$ gilt. Die Matrix S braucht **nicht** angegeben werden!
- (e) Geben Sie die Determinanten von D und A an.

2. Aufgabe

$$\mathrm{Sei}\ A \in \mathbb{R}^{4,4}\ \mathrm{mit}\ \mathrm{Kern}(\mathrm{A}) = \left\{s \begin{bmatrix} 1\\2\\-1\\1 \end{bmatrix} \middle| s \in \mathbb{R}\right\} \quad \mathrm{und} \quad \vec{u} = \begin{bmatrix} 1\\2\\-1\\1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \vec{w} = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}.$$

- (a) Bestimmen Sie $A\vec{u}$.
- (b) Bestimmen Sie die Dimensionen des Kerns von A und des Bildes von A.
- (c) Bestimmen Sie den Rang von A.
- (d) Ist die lineare Abbildung $L_A: \mathbb{R}^4 \to \mathbb{R}^4, \vec{x} \mapsto A\vec{x}$ injektiv? Ist diese Abbildung bijektiv?
- (e) Es gilt $A\vec{v} = \vec{w}$. Geben Sie die Lösungsmenge des linearen Gleichungssystems $A\vec{x} = \vec{w}$ an.

3. Aufgabe 11 Punkte

Begründen Sie jeweils, ob es sich um eine lineare Abbildung handelt.

(a)
$$L_1: \mathbb{R}^3 \to \mathbb{R}^2$$
, $L_1 \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_3 - x_2 \\ 2x_1 + x_2 \end{bmatrix}$

(b)
$$L_2: \mathbb{R}^2 \to \mathbb{R}^2$$
, $L_2\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 1 \\ 2x_2 \end{bmatrix}$

(c)
$$L_3: \mathbb{R}_{\leq 2}[x] \to \mathbb{R}_{\leq 2}[x], \quad L_3(p) = p' + p$$

4. Aufgabe

Gegeben sind die drei Vektoren $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \vec{w} = \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix}, \vec{z} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ des } \mathbb{R}^3.$

- (a) Zeigen Sie: Das Volumen des von den Vektoren $\vec{v}, \vec{w}, \vec{z}$ aufgespannten Parallelepipeds (auch Spat genannt) hat den Wert 3.
- (b) Sind die Vektoren $\vec{v}, \vec{w}, \vec{z}$ linear unabhängig?
- (c) Sei $A \in \mathbb{R}^{3,3}$ mit det A = 4. Geben Sie das Volumen des von den Vektoren $A\vec{v}, A\vec{w}, A\vec{z}$ aufgespannten Parallelepipeds an.
- (d) Sei $Q \in \mathbb{R}^{3,3}$ eine orthogonale Matrix. Die Antworten auf folgende Fragen brauchen Sie **nicht zu** begründen!
 - (i) Der Winkel zwischen \vec{v} und \vec{w} sei α . Wie groß ist der Winkel zwischen $Q\vec{v}$ und $Q\vec{w}$?
 - (ii) Es gilt $\|\vec{v}\| = \sqrt{5}$. Wie groß ist die Norm von $Q\vec{v}$?
 - (iii) Ist Q invertierbar? Geben Sie gegebenfalls die Inverse an!
 - (iv) Welche Werte kann die Determinante von Q annehmen?