Technische Universität Berlin Fakultät II – Institut für Mathematik M. Huber/R. Nabben/K. Roegner

SS 08 23.07.2008

Juli – Klausur (Verständnisteil) Lineare Algebra für Ingenieure

Name:	Vorname: .					
MatrNr.:	Studiengan	g:				
Neben einem handbeschriebenen A4 Bl mittel zugelassen. Insbesondere sind ke i zugelassen!						
Die Lösungen sind in Reinschrift auf Ad Ihrem Namen und Ihrer Matrikelnummer Klausuren können nicht gewertet werde	r beschriftet s	_				
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen aus eine kurze, aber vollständige Begrü	der Vorlesun				_	
Die Bearbeitungszeit beträgt 60 Minut	en.					
Die Gesamtklausur ist mit 40 von 80 Pur Teile der Klausur mindestens 12 von 40		,	•	dem de	r beider	1
Korrektur						
	1	2	3	4	Σ	

Geben Sie bei Ihren Antworten immer eine kurze, aber vollständige Begründung an! Für Antworten ohne Begründung gibt es keine Punkte!

1. Aufgabe

Eine lineare Abbildung ist gegeben durch $L: \mathbb{R}^4 \to \mathbb{R}^4, \ \vec{x} \mapsto \left| \begin{array}{cccc} 2 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 4 & 8 \\ 0 & 0 & 0 & 3 \end{array} \right| \vec{x}.$

- (a) Welche Eigenwerte hat die Abbildung L?
- (b) Ist L diagonalisierbar?
- (c) Bestimmen Sie dim (Kern (L)) und dim (Bild (L)).
- (d) Ist L eine bijektive Abbildung?

2. Aufgabe 10 Punkte

Sei $F: \mathbb{R}^{2,2} \to \mathbb{R}_{<4}[x]$ die lineare Abbildung, die definiert ist durch:

$$F\left(\left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right]\right) = x^2 + 3x \qquad F\left(\left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right]\right) = 2x + 4$$

$$F\left(\left[\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right]\right) = x + 2 \qquad F\left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right]\right) = -3x^2 + 9x$$

- (a) Bestimmen Sie $F\left(\begin{bmatrix} 3 & 3 \\ -2 & -2 \end{bmatrix}\right)$.
- (b) Bestimmen Sie **zwei** Elemente von Kern (F).
- (c) Ist F eine invertierbare Abbildung?

3. Aufgabe 10 Punkte

Gegeben ist die Basis
$$\mathcal{C} := \left\{ \vec{c}_1 := \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \vec{c}_2 := \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \vec{c}_3 := \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \right\}$$
 des eukli-

dischen Vektorraums \mathbb{R}^3 , der mit dem Standardskalarprodukt \langle , \rangle ausgestattet ist. Das Gram-Schmidt-Verfahren angewendet auf \mathcal{C} ergibt die Orthonormalbasis $\mathcal{Q} :=$

$$\left\{ \vec{q}_1 := \frac{1}{3} \begin{bmatrix} 2\\2\\1 \end{bmatrix}, \vec{q}_2 := \frac{1}{3} \begin{bmatrix} -2\\1\\2 \end{bmatrix}, \vec{q}_3 := \frac{1}{3} \begin{bmatrix} 1\\-2\\2 \end{bmatrix} \right\}. \text{ Ferner sei } Q := [\vec{q}_1 \ \vec{q}_2 \ \vec{q}_3].$$

- (a) Bestimmen Sie die inverse Matrix zu Q.
- (b) Bestimmen Sie eine QR-Zerlegung der Matrix $C := [\vec{c_1} \ \vec{c_2} \ \vec{c_3}].$
- (c) Lösen Sie das lineare Gleichungssystem $Q\vec{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.
- (d) Die Vektoren $\vec{v}_1, \vec{v}_2 \in \mathbb{R}^3$ sind zu einander orthogonal. Bestimmen Sie $\langle Q\vec{v}_1, Q\vec{v}_2 \rangle$.

4. Aufgabe 11 Punkte

Prüfen Sie, ob es sich bei den gegebenen Mengen M_1, M_2, M_3 um Teilräume des $\mathbb{R}^{2,2}$ handelt.

$$M_{1} := \left\{ A \in \mathbb{R}^{2,2} \mid \dim(\operatorname{Kern}(A)) = 0 \right\}$$

$$M_{2} := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2,2} \mid a, b, c, d \text{ sind ganze Zahlen} \right\}$$

$$M_{3} := \left\{ B \in \mathbb{R}^{2,2} \mid B \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$