Technische Universität Berlin

Fakultät II – Institut für Mathematik F. Aurzada, L. Knipping, R. Nabben, C. Schröder

WS 11/12 24.02.2012

Februar – Klausur Lineare Algebra für Ingenieure Lösungsskizze Klausurvariante A

1. Aufgabe

Gegeben sei das reelle lineare Gleichungssystem $A\vec{x} = \vec{b}$ mit $A := \begin{bmatrix} 1 & -2 & 1 & -1 \\ 3 & -6 & 1 & 1 \\ -2 & 4 & -2 & 2 \end{bmatrix}$ und $\vec{b} := \begin{bmatrix} 2 \\ 2 \\ -4 \end{bmatrix}$.

- (a) Bringen Sie die erweiterte Koeffizientenmatrix $[A|\bar{b}]$ auf normierte Zeilenstufenform.
- (b) Bestimmen Sie die Lösungsmenge von $A\vec{x} = \vec{b}$.
- (c) Bestimmen Sie eine Basis von Bild(A).
- (d) Bestimmen Sie den Rang von A^T .

(a) **(3 Punkte)**

$$\begin{bmatrix}
1 & -2 & 1 & -1 & 2 \\
3 & -6 & 1 & 1 & 2 \\
-2 & 4 & -2 & 2 & -4
\end{bmatrix}
\xrightarrow{\text{III}+2I}
\begin{bmatrix}
1 & -2 & 1 & -1 & 2 \\
0 & 0 & -2 & 4 & -4 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{\frac{1}{2}\text{II}}
\begin{bmatrix}
1 & -2 & 0 & 1 & 0 \\
0 & 0 & 1 & -2 & 2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

(b) (4 Punkte)

Aus der NZSF(A) folgt, dass x_1, x_3 Kopfvariablen sind. Setze $x_2 := s, x_4 := t \in \mathbb{R}$. Kopfvariablen als Linearkombination von x_2, x_4 darstellen:

$$x_{1} = 2x_{2} - x_{4} = 2s - t \text{ und } x_{3} = 2 + 2x_{4} = 2 + 2t. 2$$

$$\mathcal{L} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 2 \\ 1 \end{bmatrix} \mid s, t \in \mathbb{R} \right\}$$

(c) **(2 Punkte)**

Die erste und dritte Spalte der NZSF(A) haben Köpfe. Also bilden die erste und dritte Spalte der Ausgangsmatrix A eine Basis von Bild(A) : $\left\{ \begin{bmatrix} 1\\3\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\-2 \end{bmatrix} \right\}$.

(d) (2 Punkte)

Der Spaltenrang ist gleich dem Zeilenrang. Also gilt $\operatorname{rang}(A) = \operatorname{rang}(A^T)$. Der Rang von A ist 2, da nach a) die NZSF(A) zwei Köpfe hat. Also ist der Rang von A^T ebenfalls 2.

2. Aufgabe Gegeben sei die Matrix $B := \begin{bmatrix} -2 & -2 & 4 \\ 0 & 2 & 0 \\ -2 & -1 & 4 \end{bmatrix} \in \mathbb{R}^{3,3}$ und der Vektor $\vec{w} := \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} \in \mathbb{R}^3$. 14 Punkte

- (a) Bestimmen Sie das charakteristische Polynom p_B der Matrix B.
- (b) Bestimmen Sie alle Eigenwerte von B und den Eigenraum zum größten Eigenwert.
- (c) Ist B diagonalisierbar?
- (d) Zeigen Sie, dass \vec{w} ein Eigenvektor von B ist.
- (e) Lösen Sie das folgende Anfangswertproblem: $\frac{d\vec{y}}{dt}(t) = B\vec{y}(t)$ für $\vec{y}_0 = \vec{y}(0) = 7\vec{w}$.

(a) **(3 Punkte)**

$$p_{B}(\lambda) = \det(B - \lambda \cdot I_{3}) = \det\left(\begin{bmatrix} -2 & -2 & 4 \\ 0 & 2 & 0 \\ -2 & -1 & 4 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right)$$

$$= \det\left(\begin{bmatrix} -2 - \lambda & -2 & 4 \\ 0 & 2 - \lambda & 0 \\ -2 & -1 & 4 - \lambda \end{bmatrix}\right) \xrightarrow{\text{Laplace} \atop =} (2 - \lambda) \cdot \det\left(\begin{bmatrix} -2 - \lambda & 4 \\ -2 & 4 - \lambda \end{bmatrix}\right)$$

$$= (2 - \lambda) \left[(-2 - \lambda)(4 - \lambda) + 8\right]$$

$$= (2 - \lambda)(\lambda^{2} - 2\lambda) = -\lambda(2 - \lambda)^{2}$$

(b) **(5 Punkte)**

Die Eigenwerte von B sind die Nullstellen von $p_B(\lambda)$: $\lambda_1 = 0$ und $\lambda_{2/3} = 2$. 2 Der Eigenraum zum Eigenwert 2 ist:

$$V_{\lambda_{2/3}} = \operatorname{Kern}(B - 2 \cdot I_3) = \operatorname{Kern} \left(\begin{bmatrix} -4 & -2 & 4 \\ 0 & 0 & 0 \\ -2 & -1 & 2 \end{bmatrix} \right) \underset{-2III+I}{=} \operatorname{Kern} \left(\begin{bmatrix} -4 & -2 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) \underset{-\frac{1}{4}I}{=} \operatorname{Kern} \left(\begin{bmatrix} 1 & \frac{1}{2} & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right)$$

$$= \operatorname{span} \left\{ \begin{bmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

(c) (3 Punkte)

Nach a), b) ist algVFH($\lambda_{1/2}$) = 2 =dim($V_{\lambda_{1/2}}$) =geomVFH($\lambda_{1/2}$), da $\lambda_{1/2}$ doppelte Nullstelle von p_B ist und der zugehörige Eigenraum $V_{\lambda_{1/2}}$ von zwei linear unabhängigen Vektoren aufgespannt wird. Da für jeden Eigenwert $1 \leq \text{geomVFH} \leq \text{algVFH}$ gilt, ist $\text{algVFH}(\lambda_3) = 1 = \text{geomVFH}(\lambda_3)$. Also stimmt die algVFH mit der geomVFH für alle Eigenwerte von B überein und B ist somit diagonalisierbar.

(d) (1 Punkt)

$$B\vec{w} = \begin{bmatrix} -2 & -2 & 4 \\ 0 & 2 & 0 \\ -2 & -1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 4 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} = 2\vec{w}$$

(e) **(2 Punkte)**

 $7\vec{w}$ ist Eigenvektor von B zum Eigenwert 2, da $B(7\vec{w}) = 7 \cdot (B\vec{w}) = \underset{\text{nach d}}{=} 7 \cdot (2\vec{w}) = 2 \cdot (7\vec{w})$.

$$\vec{y}(t) = e^{2(t-0)} \cdot 7 \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} \quad = \begin{bmatrix} 14e^{2t} \\ 0 \\ 14e^{2t} \end{bmatrix}$$

3. Aufgabe

Gegeben seien der Vektorraum $V := \{A \in \mathbb{R}^{2,2} \mid A \text{ obere Dreiecksmatrix}\}$, eine Basis von V

$$\mathcal{B} := \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & -2 \end{array} \right], \, \left[\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array} \right], \, \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right] \right\},$$

sowie die lineare Abbildung $L:V\to V$, von der Folgendes bekannt sei:

$$L\left(\left[\begin{array}{cc} 1 & 0 \\ 0 & -2 \end{array}\right]\right) = \left[\begin{array}{cc} -1 & 0 \\ 0 & 2 \end{array}\right], \quad L\left(\left[\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array}\right]\right) = \left[\begin{array}{cc} 6 & 3 \\ 0 & 0 \end{array}\right], \quad L\left(\left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right]\right) = \left[\begin{array}{cc} 4 & 3 \\ 0 & 4 \end{array}\right].$$

- (a) Bestimmen Sie zwei verschiedene Elemente aus Kern(L).
- (b) Ist L injektiv/surjektiv/bijektiv?
- (c) Bestimmen Sie die darstellende Matrix $L_{\mathcal{B}}$ von L bzgl. der Basis \mathcal{B} .
- (d) Bestimmen Sie alle Eigenwerte von L.

(a) **(4 Punkte)**

$$\begin{array}{l} \text{(4 Punkte)} \\ \text{Da L eine lineare Abbildung ist, ist } \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in \operatorname{Kern}(L). \\ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 2 \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} 6 & 3 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 4 & 3 \\ 0 & 4 \end{bmatrix} \\ = 2L \left(\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \right) + L \left(\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \right) - L \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right) \\ = L \left(2 \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right) = L \left(\begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} \right) \\ \operatorname{Also ist auch} \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} \in \operatorname{Kern}(L).$$

(b) **(3 Punkte)**

Nach a) ist $\dim(\operatorname{Kern}(L) \neq 0$, also L nicht injektiv. Aus dem Dimensionssatz folgt, dass $\dim(\operatorname{Bild}(L)) = \underbrace{\dim(V)}_{=3} - \underbrace{\dim(\operatorname{Kern}(L))}_{>0} \le 2 < 3 = \dim(V).$

(c) (5 Punkte)

Spaltenweise Bestimmung von $L_{\mathcal{B}}$:

1. Spalte ist
$$L_{\mathcal{B}}\vec{e}_{1} = K_{\mathcal{B}}(L(K_{\mathcal{B}}^{-1}(\vec{e}_{1}))) = K_{\mathcal{B}}(L\left(\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}\right)) = K_{\mathcal{B}}\left(\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}\right)$$

$$= K_{\mathcal{B}}\left(-1\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}\right) = -1K_{\mathcal{B}}\left(\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}\right) = -\vec{e}_{1} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$
2. Spalte ist $L_{\mathcal{B}}\vec{e}_{2} = K_{\mathcal{B}}(L(K_{\mathcal{B}}^{-1}(\vec{e}_{2}))) = K_{\mathcal{B}}(L\left(\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}\right)) = K_{\mathcal{B}}\left(\begin{bmatrix} 6 & 3 \\ 0 & 0 \end{bmatrix}\right)$

$$= K_{\mathcal{B}}\left(3\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}\right) = 3K_{\mathcal{B}}\left(\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}\right) = 3\vec{e}_{2} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}$$
3. Spalte ist $L_{\mathcal{B}}\vec{e}_{3} = K_{\mathcal{B}}(L(K_{\mathcal{B}}^{-1}(\vec{e}_{3}))) = K_{\mathcal{B}}(L\left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}\right)) = K_{\mathcal{B}}\left(\begin{bmatrix} 4 & 3 \\ 0 & 4 \end{bmatrix}\right)$

$$= K_{\mathcal{B}}\left(-2\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}\right) + 3\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}\right) = -2K_{\mathcal{B}}\left(\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}\right) + 3K_{\mathcal{B}}\left(\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}\right)$$

$$= -2\vec{e}_{1} + 3\vec{e}_{2} = \begin{bmatrix} -2 \\ 3 \\ 0 \end{bmatrix}$$

$$L_{\mathcal{B}} = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 3 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

(d) **(2 Punkte)**

Die Eigenwerte sind invariant gegenüber Basiswahl. Also sind die Eigenwerte von L die gleichen, wie die von $L_{\mathcal{B}}$. $L_{\mathcal{B}}$ ist eine obere Dreiecksmatrix. Die Eigenwerte stehen also auf der Diagonalen. Somit sind die Eigenwerte von L: -1, 3 und 0.

4. Aufgabe 5 Punkt

Gegeben sei der folgende zweidimensionale Teilraum des $\mathbb{R}_{\leq 3}[x]$: $W := \{ax^3 + bx - a \mid a, b \in \mathbb{R}\}.$

- (a) Wählen Sie aus der Menge $\mathcal{M}:=\left\{x^3+2x-1\;,\;x^2-2\;,\;0\;,\;-x^3+1\;,\;2x-1\right\}\subset\mathbb{R}_{\leq 3}[x]$ eine Basis \mathcal{D} von W aus. Zeigen Sie, dass \mathcal{D} eine Basis von W ist.
- (b) Begründen Sie kurz, warum span $\{x^2-2\}$ kein Teilraum von W ist.

(a) **(4 Punkte)**

Wähle $\mathcal{D}=\left\{x^3+2x-1,-x^3+1\right\}$. Es gilt $\mathcal{D}\subset W$, denn beide Polynome sind aus W (für a=1,b=2 bzw. a=1,b=0). Zwei linear unabhängige Polynome bilden eine Basis von W, da $\dim(W)=2$ nach Aufgabenstellung. Die beiden Polynome in \mathcal{D} sind linear unabhängig, denn sie sind keine Vielfachen voneinander , d.h. es gibt kein $\alpha\in\mathbb{R}$ mit $x^3+2x-1=\alpha(-x^3+1)$. Somit ist \mathcal{D} eine Basis von W.

(b) (1 Punkt)

 $\operatorname{span}\{x^2-2\}\not\subset W$, denn $x^2-2\not\in W$, da es keine $a,b\in\mathbb{R}$ gibt mit $ax^3+bx-a=x^2-2$. Somit kann $\operatorname{span}\{x^2-2\}$ kein Teilraum von W sein.

5. Aufgabe 10 Punkte

Gegeben seien die folgenden Abbildungen:

$$F_1: \quad \mathbb{R}^2 \quad \to \quad \mathbb{R}^3 \quad , \quad F_2: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}_{\leq 2}[x] \quad , \quad F_3: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}^2 \quad .$$

$$\begin{bmatrix} a \\ b \end{bmatrix} \quad \mapsto \quad \begin{bmatrix} b-a \\ 2a \\ b \end{bmatrix} \quad \mapsto \quad \begin{bmatrix} a \\ b \\ c \end{bmatrix} \quad \mapsto \quad cx^2 + x + (a-b) \quad \qquad \begin{bmatrix} a \\ b \\ c \end{bmatrix} \quad \mapsto \quad \begin{bmatrix} 2a+b \\ b-c \end{bmatrix}$$

- (a) Bestimmen Sie die Abbildungsvorschrift der Komposition $F_3 \circ F_1$.
- (b) Überprüfen Sie, ob F_1 eine lineare Abbildung ist.
- (c) Überprüfen Sie, ob F_2 eine lineare Abbildung ist.

(a) (3 Punkte)

$$(F_3 \circ F_1) \left(\left[\begin{array}{c} a \\ b \end{array} \right] \right) = F_3 \left(F_1 \left(\left[\begin{array}{c} a \\ b \end{array} \right] \right) \right) = F_3 \left(\left[\begin{array}{c} b-a \\ 2a \\ b \end{array} \right] \right)$$

$$= \left[\begin{array}{c} 2b \\ 2a-b \end{array} \right]$$

(b) **(5 Punkte)**

Z.z. ist, dass
$$F_1$$
 additive und homogeneist. Für $\begin{bmatrix} a \\ b \end{bmatrix}$, $\begin{bmatrix} c \\ d \end{bmatrix} \in \mathbb{R}^2$, $\alpha \in \mathbb{R}$ gilt:
$$F_1\left(\begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix}\right) = F_1\left(\begin{bmatrix} a+c \\ b+d \end{bmatrix}\right) = \begin{bmatrix} (b+d)-(a+c) \\ 2(a+c) \\ b+d \end{bmatrix} = \begin{bmatrix} b-a \\ 2a \\ b \end{bmatrix} + \begin{bmatrix} d-c \\ 2c \\ d \end{bmatrix} = F_1\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) + F_1\left(\begin{bmatrix} a \\ b \end{bmatrix}\right)$$

 $F_1\left(\left[\begin{array}{c}c\\d\end{array}\right]\right)$ 2 F_1 ist also additiv.

$$F_1\left(\alpha\left[\begin{array}{c}a\\b\end{array}\right]\right) = F_1\left(\left[\begin{array}{c}\alpha a\\\alpha b\end{array}\right]\right) = \left[\begin{array}{c}\alpha b - \alpha a\\2\alpha a\\\alpha b\end{array}\right] = \alpha\left[\begin{array}{c}b - a\\2a\\b\end{array}\right] = \alpha F_1\left(\left[\begin{array}{c}a\\b\end{array}\right]\right) \ 2$$

 F_1 ist also auch homogen.

Da additiv und homogen, ist F_1 linear.

$$F_2\left(0\begin{bmatrix}0\\0\\0\end{bmatrix}\right) = F_2\left(\begin{bmatrix}0\\0\\0\end{bmatrix}\right) = x \neq 0 = 0 \cdot x = 0 \\ F_2 \text{ ist nicht homogen und somit nicht linear.}$$

6. Aufgabe 6 Punkte

Gegeben sei der euklidische Vektorraum \mathbb{R}^2 ausgestattet mit dem Skalarprodukt

$$\langle \left[\begin{array}{c} a \\ b \end{array} \right], \left[\begin{array}{c} c \\ d \end{array} \right] \rangle = \alpha ac + \beta bd, \ \alpha, \beta \in \mathbb{R}^+.$$

- (a) Bestimmen Sie $\alpha, \beta \in \mathbb{R}^+$, sodass $\mathcal{B}_{ONB} = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ eine Orthonormalbasis des \mathbb{R}^2 bezüglich des Skalarprodukts $\langle \cdot, \cdot \rangle$ ist.
- (b) Bestimmen Sie den Koordinatenvektor von $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$ bezüglich der Basis \mathcal{B}_{ONB} .
- (a) **(4 Punkte)**

$$\langle \left[\begin{array}{c} 1 \\ -2 \end{array} \right], \left[\begin{array}{c} 1 \\ -2 \end{array} \right] \rangle = \langle \left[\begin{array}{c} 1 \\ 2 \end{array} \right], \left[\begin{array}{c} 1 \\ 2 \end{array} \right] \rangle = \alpha + 4\beta = 1 \ \ \mathrm{und} \ \langle \left[\begin{array}{c} 1 \\ -2 \end{array} \right], \left[\begin{array}{c} 1 \\ 2 \end{array} \right] \rangle = \alpha - 4\beta = 0 \ .$$

Da $\mathcal{B}_{\mathrm{ONB}}$ eine Orthonormalbasis bezüglich $\langle \cdot, \cdot \rangle_1$ sein soll, gilt $\langle \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \rangle = \langle \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \rangle = \alpha + 4\beta = 1$ und $\langle \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \rangle = \alpha - 4\beta = 0$. Aus der zweiten Gleichung erhählt man: $\alpha - 4\beta = 0 \Leftrightarrow \alpha = 4\beta$. Dies eingesetzt in die erste Gleichung ergibt: $\alpha + 4\beta = 4\beta + 4\beta = 8\beta = 1 \Leftrightarrow \beta = \frac{1}{8}$ und schließlich $\alpha = 4\beta = 4\frac{1}{8} = \frac{1}{2}$. Für $\alpha = \frac{1}{2}$ und $\beta = \frac{1}{8}$ ist \mathcal{B}_{ONB} bezüglich $\langle \cdot, \cdot \rangle$ eine Orthonormalbasis.

(b) (2 Punkte)

$$\begin{bmatrix} 2 \\ 5 \end{bmatrix}_{\mathcal{B}_{\text{ONB}}} \stackrel{\equiv}{\text{ONB}} \begin{bmatrix} \langle \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \rangle \\ \langle \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \rangle \end{bmatrix} = \begin{bmatrix} 1 - \frac{10}{8} \\ 1 + \frac{10}{8} \end{bmatrix} = \begin{bmatrix} -\frac{1}{4} \\ \frac{9}{4} \end{bmatrix}.$$