Juli – Klausur Lineare Algebra für Ingenieure Lösungsskizze

1. Aufgabe 11 Punkte

Gegeben seien die Matrix $A := \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix} \in \mathbb{R}^{3,3}$ und die Vektoren $\vec{b}_1 := \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}, \vec{b}_2 := \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \in \mathbb{R}^3$.

- (a) Bestimmen Sie die normierte Zeilenstufenform der erweiterten Koeffizientenmatrix $[A|\overline{b_1}]$.
- (b) Bestimmen Sie die Lösungsmenge des reellen linearen Gleichungssystems $A\vec{x} = \vec{b}_1$.
- (c) Sind die Spalten von A linear unabhängig?
- (d) Bestimmen Sie Bild(A) und die Dimension von Bild(A).
- (e) Gilt $\vec{b}_1 \in \text{Bild}(A)$? Gilt $\vec{b}_2 \in \text{Bild}(A)$?

(a) (3 Punkte)

$$[A|\vec{b_1}] = \begin{bmatrix} 1 & -1 & 1 & 2 \\ -1 & 2 & 1 & -2 \\ 1 & -1 & 1 & 3 \end{bmatrix} \xrightarrow{\text{III-I}} \begin{bmatrix} 1 & -1 & 1 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{I-2III}} \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(b) (2 Punkte)

 $\operatorname{Rang}(A) = 2 \neq 3 = \operatorname{Rang}([A|\vec{b}_1])$, da nach a) zwei bzw. drei Köpfe in der NZSF von A bzw. $[A|\vec{b}_1]$. Die Lösungsmenge ist also $\mathcal{L} = \emptyset$.

(c) **(1 Punkte)**

Rang(A) = 2 < 3 = Anzahl der Spalten von A". Die Spalten von A sind folglich linear abhängig.

(d) **(3 Punkte)**

Da nach a) in der NZSF von A in der ersten und zweiten Spalte Köpfe sind, sind die ersten beiden Spaltenvektoren von A linear unabhängig und bilden ein Erzeugendensystem von Bild(A). Somit und $\dim(\operatorname{Bild}(A))=2$, da der Teilraum von zwei linear unabhängigen Vektoren aufgespannt wird.

(e) (2 Punkte)

Nach b) hat $A\vec{x} = \vec{b}_1$ keine Lösung. Somit ist $\vec{b}_1 \notin Bild(A)$.

 \vec{b}_2 ist der dritte Spaltenvektor von A und ist somit im Spann der Spalten von A enthalten, welche ein Erzeugendensystem von Bild(A) bilden. Es gilt also $\vec{b}_2 \in \text{Bild}(A)$.

2. Aufgabe

11 Punkte

Gegeben sei die Matrix $B := \begin{bmatrix} 3 & 0 & 0 \\ 1 & 2 & -1 \\ 2 & -2 & 1 \end{bmatrix} \in \mathbb{R}^{3,3}$.

- (a) Bestimmen Sie das charakteristische Polynom p_B von B.
- (b) Bestimmen Sie alle Eigenwerte von B sowie die jeweiligen algebraischen Vielfachheiten.
- (c) Ist B diagonalisierbar?

(a) (3 Punkte)

$$p_{B}(\lambda) = \det(B - \lambda I_{3}) = \det\left(\begin{bmatrix} 3 - \lambda & 0 & 0\\ 1 & 2 - \lambda & -1\\ 2 & -2 & 1 - \lambda \end{bmatrix}\right)$$

$$\stackrel{\text{Laplace}}{=} (3 - \lambda) \cdot \det\left(\begin{bmatrix} 2 - \lambda & -1\\ -2 & 1 - \lambda \end{bmatrix}\right)$$

$$= (3 - \lambda)[(2 - \lambda)(1 - \lambda) - 2] = (3 - \lambda)(\lambda^{2} - 3\lambda) = -\lambda(3 - \lambda)^{2}$$

(b) (3 Punkte)

Die Eigenwerte von B sind die Nullstellen des charakteristischen Polynoms p_B : $\lambda_1 = 0$, $\lambda_{2/3} = 3$. Die algebraische Vielfachheit von λ_1 ist 1, die von $\lambda_{2/3}$ 2, da λ_1 eine einfache und $\lambda_{2/3}$ eine doppelte Nullstelle von p_B ist.

(c) **(5 Punkte)**

B ist diagonalisierbar, falls die algebraische gleich der geometrischen Vielfachheit für alle Eigenwerte von B ist.

Die alg VFHen der Eigenwerte sind aus b) bekannt. Da für jeden Eigenwert die geom VFH kleiner gleich der alg VFH, aber mindestens 1 sein muss, ist die geom VFH von λ_1 gleich der alg VFH, nämlich 1.

Für $\lambda_{2/3}$ gilt:

geom VFH
$$(\lambda_{2/3}) = \dim(V_{\lambda_{2/3}}) = \dim(\text{Kern}(B - 3I_3)) = \dim(\text{Kern}\left(\begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & -1 \\ 2 & -2 & -2 \end{bmatrix}\right))$$

$$\stackrel{\text{I} \leftrightarrow \text{II}}{\underset{\text{III}-2\text{II}}{=}} \dim(\text{Kern} \left(\begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right)) = 2, \text{ da zwei Spalten ohne K\"{o}pfe in einer ZSF.}$$

Also ist auch für $\lambda_{2/3}^-$ die alg VFH gleich der geom VFH und B somit diagonalisierbar.

3. Aufgabe 10 Punkte

Gegeben sei die lineare Abbildung $F: \mathbb{R}^2 \to \mathbb{R}_{\leq 1}[x]$ mit $\left[\begin{array}{c} a \\ b \end{array} \right] \mapsto (a+b)x - 2b$.

- (a) Bestimmen Sie Kern(F).
- (b) Ist F bijektiv?
- (c) Ist F invertierbar? Falls F invertierbar ist, bestimmen Sie die zu F inverse Abbildung F^{-1} .

(a) **(3 Punkte)**

Für den Kern von F gilt: $\operatorname{Kern}(F) = \{\vec{x} \in \mathbb{R}^2 \mid F(\vec{x}) = 0\}.$ $F\left(\left[\begin{array}{c} a \\ b \end{array}\right]\right) = (a+b)x - 2b = 0x + 0$

$$F\left(\left[\begin{array}{c} a\\ b \end{array}\right]\right) = (a+b)x - 2b = 0x + 0$$

Koeffizientenvergleich ergibt das LGS: a + b = 0 und -2b = 0. Aus der zweiten Gleichung folgt b=0und dies in die erste eingesetzt, führt zu $a=0.\,$

Somit gilt:
$$\operatorname{Kern}(F) = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}.$$

(b) **(3 Punkte)**

F ist injektiv, da nach a) $\operatorname{Kern}(F) = \{\vec{0}\}.$

Aus dem Dimensionssatz folgt, dass $\dim(\text{Bild}(F)) = \dim(\mathbb{R}^2) - \dim(\text{Kern}(F)) = 2 - 0 = 2$. Also gilt $\dim(\text{Bild}(F)) = 2 = \dim(\mathbb{R}^2)$ und F ist somit auch surjektiv.

F ist bijektiv, da injektiv und surjektiv.

(c) **(4 Punkte)**

F ist invertierbar, da nach b) bijektiv.

$$F^{-1}: \mathbb{R}_{\leq 1}[x] \to \mathbb{R}^2 \text{ mit } ax + b \mapsto \begin{bmatrix} m \\ n \end{bmatrix} \text{ wobei gilt: } F(F^{-1}(ax+b)) = ax + b.$$

$$F(F^{-1}(ax+b)) = F\left(\left[\begin{array}{c} m \\ n \end{array}\right]\right) = (m+n)x - 2n = ax+b$$

Koeffizientenvergleich ergibt folgendes LGS: m+n=a und -2n=b. Aus der zweiten Gleichung folgt $n=-\frac{b}{2}$ und dies eingesetzt in die erste Gleichung ergibt $m=a+\frac{b}{2}$

Also ist
$$F^{-1}(ax+b) = \begin{bmatrix} a+\frac{b}{2} \\ -\frac{b}{2} \end{bmatrix}$$
.

4. Aufgabe

12 Punkte

Gegeben sei die lineare Abbildung $G: \mathbb{R}^3 \to \mathbb{R}^3$, von der Folgendes bekannt ist:

$$G\left(\left[\begin{array}{c}1\\1\\0\end{array}\right]\right)=\left[\begin{array}{c}-1\\-1\\0\end{array}\right],\quad G\left(\left[\begin{array}{c}0\\1\\2\end{array}\right]\right)=\left[\begin{array}{c}2\\3\\3\end{array}\right],\quad G\left(\left[\begin{array}{c}2\\2\\1\end{array}\right]\right)=\left[\begin{array}{c}-2\\1\\5\end{array}\right].$$

- (a) Bestimmen Sie die darstellende Matrix $G_{\mathcal{B}}$ von G bzgl. der Basis $\mathcal{B} := \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\2\\1 \end{bmatrix} \right\}$ des \mathbb{R}^3 .
- (b) Zeigen Sie, dass $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ und $\begin{bmatrix} -2\\-1\\1 \end{bmatrix}$ Eigenvektoren von G zu den Eigenwerten -1 bzw. -2 sind.
- (c) Lösen Sie das folgende Anfangswertproblem: $\frac{d\vec{y}}{dt}(t) = G\vec{y}(t)$ für $\vec{y}_0 = \vec{y}(3) = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

(a) **(6 Punkte)**

Für die *i*-te Spalte von
$$G_{\mathcal{B}}$$
 gilt: $G_{\mathcal{B}}(\vec{e}_i) = K_{\mathcal{B}}(G(K_{\mathcal{B}}^{-1}(\vec{e}_i)).$

$$G_{\mathcal{B}}(\vec{e}_1) = K_{\mathcal{B}}(G(K_{\mathcal{B}}^{-1}(\vec{e}_1)) = K_{\mathcal{B}}(G\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right)) = K_{\mathcal{B}}\left(\begin{bmatrix}-1\\-1\\0\end{bmatrix}\right) = -K_{\mathcal{B}}\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right) = -\vec{e}_1 = \begin{bmatrix}-1\\0\\0\end{bmatrix}$$

$$G_{\mathcal{B}}(\vec{e}_2) = K_{\mathcal{B}}(G(K_{\mathcal{B}}^{-1}(\vec{e}_2)) = K_{\mathcal{B}}(G\left(\begin{bmatrix}0\\1\\2\end{bmatrix}\right)) = K_{\mathcal{B}}\left(\begin{bmatrix}2\\3\\3\end{bmatrix}\right) = K_{\mathcal{B}}\left(\begin{bmatrix}0\\1\\2\end{bmatrix}\right) + \begin{bmatrix}2\\2\\1\end{bmatrix}\right) = K_{\mathcal{B}}\left(\begin{bmatrix}0\\1\\2\end{bmatrix}\right) + K_{\mathcal{B}}\left(\begin{bmatrix}2\\2\\1\end{bmatrix}\right) = \vec{e}_2 + \vec{e}_3 = \begin{bmatrix}0\\1\\1\end{bmatrix}$$

$$G_{\mathcal{B}}(\vec{e}_3) = K_{\mathcal{B}}(G(K_{\mathcal{B}}^{-1}(\vec{e}_3)) = K_{\mathcal{B}}(G\left(\begin{bmatrix}2\\2\\1\end{bmatrix}\right)) = K_{\mathcal{B}}\left(\begin{bmatrix}-2\\1\\5\end{bmatrix}\right) = K_{\mathcal{B}}\left(3\begin{bmatrix}0\\1\\2\end{bmatrix} - \begin{bmatrix}2\\2\\1\end{bmatrix}\right) = 3K_{\mathcal{B}}\left(\begin{bmatrix}0\\1\\2\end{bmatrix}\right) - K_{\mathcal{B}}\left(\begin{bmatrix}2\\2\\1\end{bmatrix}\right) = 3\vec{e}_2 - \vec{e}_3 = \begin{bmatrix}0\\3\\-1\end{bmatrix}$$

Also ist die darstellende Matrix von G bzgl. \mathcal{B} : $G_{\mathcal{B}} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 1 & -1 \end{bmatrix}$.

(b) **(4 Punkte)**

$$G\left(\begin{bmatrix} 1\\1\\0 \end{bmatrix}\right) = \begin{bmatrix} -1\\-1\\0 \end{bmatrix} = -1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} \text{ Also ist } \begin{bmatrix} 1\\1\\0 \end{bmatrix} \text{ Eigenvektor zum Eigenwert } -1.$$

$$G\left(\begin{bmatrix} -2\\-1\\1 \end{bmatrix}\right) = G\left(\begin{bmatrix} 0\\1\\2 \end{bmatrix} - \begin{bmatrix} 2\\2\\1 \end{bmatrix}\right) = G\left(\begin{bmatrix} 0\\1\\2 \end{bmatrix}\right) - G\left(\begin{bmatrix} 2\\2\\1 \end{bmatrix}\right) - G\left(\begin{bmatrix} 2\\2\\1 \end{bmatrix}\right) = \begin{bmatrix} 2\\3\\3 \end{bmatrix} - \begin{bmatrix} -2\\1\\5 \end{bmatrix}$$

$$= \begin{bmatrix} 4\\2\\-2 \end{bmatrix} = -2 \begin{bmatrix} -2\\-1\\1 \end{bmatrix} \text{ Also ist } \begin{bmatrix} -2\\-1\\1 \end{bmatrix} \text{ Eigenvektor zum Eigenwert } -2.$$

(c) **(2 Punkte)**

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \text{ und } \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix} \text{ sind nach b) Eigenvektoren von } G. \text{ Da gilt } 1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \vec{y}_0,$$
 ist \vec{y}_0 als Linearkombmination von Eigenvektoren von G darstellbar. Für $\vec{y}(t)$ gilt dann:

$$\vec{y}(t) = 1e^{-1(t-3)} \begin{bmatrix} 1\\1\\0 \end{bmatrix} + 1e^{-2(t-3)} \begin{bmatrix} -2\\-1\\1 \end{bmatrix} = \begin{bmatrix} e^{3-t} - 2e^{6-2t}\\e^{3-t} - e^{6-2t}\\e^{6-2t} \end{bmatrix}.$$

5. Aufgabe

8 Punkte

Gegeben sei der euklidische Vektorraum \mathbb{R}^2 ausgestattet mit dem Skalarprodukt

$$\left\langle \left[\begin{array}{c} a_1 \\ a_2 \end{array}\right], \left[\begin{array}{c} b_1 \\ b_2 \end{array}\right] \right\rangle_s := \frac{1}{2}a_1b_1 + \frac{1}{8}a_2b_2.$$

- (a) Zeigen Sie, dass der Vektor $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ bzgl. des gegebenen Skalarprodukts $\langle \cdot \, , \, \cdot \rangle_s$ normiert ist.
- (b) Bestimmen Sie einen Vektor $\vec{v} \in \mathbb{R}^2$, sodass $\mathcal{C} := \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \vec{v} \right\}$ eine Orthonormalbasis des \mathbb{R}^2 bzgl. $\langle \cdot \, , \, \cdot \rangle_s$ ist. Bestimmen Sie den Koordinatenvektor von $\frac{1}{17}\vec{v}$ bzgl. der Basis \mathcal{C} .
- (c) Seien $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^2$ mit $\vec{x} \neq \vec{0}$ und $\vec{z} := \vec{y} \frac{\langle \vec{y}, \vec{x} \rangle_s}{\langle \vec{x}, \vec{x} \rangle_s} \vec{x}$. Zeigen Sie unter Verwendung der Eigenschaften eines euklidischen Skalarprodukts, dass die Vektoren \vec{x} und \vec{z} orthogonal sind bzgl. $\langle \cdot, \cdot \rangle_s$.

(a) (1 Punkte)

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ ist bzgl. } \langle \cdot , \cdot \rangle_s \text{ normiert, falls gilt: } \langle \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \rangle_s = 1.$$

$$\langle \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \rangle_s = \frac{1}{2}1^2 + \frac{1}{8}(-2)^2 = \frac{1}{2} + \frac{1}{2} = 1$$

(b) **(4 Punkte)**

 $\mathcal C$ ist orthonormal bzgl. $\langle \cdot \,, \, \cdot \rangle_s$, falls die Vektoren in $\mathcal C$ jeweils normiert und orthogonal sind. Nach a) ist $\left[\begin{array}{c} 1 \\ -2 \end{array} \right]$ normiert. Weiter muss gelten für $\vec v := \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right]$:

A) Ist
$$\begin{bmatrix} -2 \end{bmatrix}$$
 normer. Wester mass generator $v:=\begin{bmatrix} v_2 \\ v_2 \end{bmatrix}$ $\left\langle \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \right\rangle_s = \frac{1}{2}v_1 + \frac{1}{8}(-2)v_2 = \frac{1}{2}v_1 - \frac{1}{4}v_2 = 0$ und $\left\langle \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \right\rangle_s = \frac{1}{2}v_1^2 + \frac{1}{8}v_2^2 = 1$

Aus der ersten Gleichung folgt $v_1 = \frac{1}{2}v_2$. Dies in die zweite Gleichung eingesetzt ergibt:

$$\frac{1}{2}\left(\frac{1}{2}v_2\right)^2 + \frac{1}{8}v_2^2 = 1 \Leftrightarrow v_2 = \pm 2$$
. Für $v_2 = 2$ ist dann $v_1 = \frac{1}{2} \cdot 2 = 1$. Somit ist \mathcal{C} z.B. für $\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ eine Orthonormalbasis des \mathbb{R}^2 bzgl. $\langle \cdot, \cdot \rangle_s$.

Der gesuchte Koordinatenvektor ist: $\left(\frac{1}{17}\vec{v}\right)_{\mathcal{C}} = \begin{bmatrix} 0 \\ \frac{1}{17} \end{bmatrix}$, da $0 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \frac{1}{17}\vec{v} = \frac{1}{17}\vec{v}$.

(c) (3 Punkte)

 \vec{x} und \vec{z} sind orthogonal, falls gilt $\langle \vec{x}, \vec{z} \rangle_s = 0$.

$$\langle \vec{x} \,,\, \vec{z} \rangle_s = \langle \vec{x} \,,\, \vec{y} - \frac{\langle \vec{y}, \vec{x} \rangle_s}{\langle \vec{x}, \vec{x} \rangle_s} \vec{x} \rangle_s$$

$$= \underset{\text{additiv}}{\langle \vec{x} \,,\, \vec{y} \rangle_s - \langle \vec{x} \,,\, \frac{\langle \vec{y}, \vec{x} \rangle_s}{\langle \vec{x}, \vec{x} \rangle_s} \vec{x} \rangle_s }$$

$$= \underset{\text{homogen}}{\langle \vec{x} \,,\, \vec{y} \rangle_s - \frac{\langle \vec{y}, \vec{x} \rangle_s}{\langle \vec{x}, \vec{x} \rangle_s} \langle \vec{x} \,,\, \vec{x} \rangle_s = \langle \vec{x} \,,\, \vec{y} \rangle_s - \langle \vec{y} \,,\, \vec{x} \rangle_s }$$

$$= \underset{\text{symmetr.}}{\langle \vec{x} \,,\, \vec{y} \rangle_s - \langle \vec{x} \,,\, \vec{y} \rangle_s = 0}$$

6. Aufgabe 8 Punkte

- (a) Zeigen Sie, dass $M:=\left\{A\in\mathbb{R}^{2,2}|\det(A)=1\right\}$ kein Teilraum des $\mathbb{R}^{2,2}$ ist.
- (b) Gegeben sei der Teilraum $N:=\left\{\left[\begin{array}{cc} 2a & b \\ 0 & a-b \end{array}\right] \mid a,b\in\mathbb{R}\right\}$ des $\mathbb{R}^{2,2}.$
 - (i) Prüfen Sie, ob $\mathcal{B}_1 := \left\{ \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$ eine Basis von N ist.
 - (ii) Prüfen Sie, ob $\mathcal{B}_2 := \left\{ \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \right\}$ eine Basis von N ist.

(a) **(2 Punkte)**

 $I_2 \in M$, da $\det(I_2) = 1 \cdot 1 - 0 \cdot 0 = 1$, aber $0I_2 \notin M$, da $\det(0I_2) = \det(0) = 0 \cdot 0 - 0 \cdot 0 = 0 \neq 1$. M ist kein Teilraum des $\mathbb{R}^{2,2}$, da nicht abgeschlossen bzgl. Skalarmultiplikation.

(b) **(6 Punkte)**

- (i) $\mathcal{B}_1 \not\subseteq N$, da $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \not\in N$. Aus $\begin{bmatrix} 2a & b \\ 0 & a-b \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ folgen durch Komponentenvergleich: $2a = 0 \Leftrightarrow a = 0$, b = 1 und $a b = 0 \Leftrightarrow a = b$. Die zweite in die dritte Gleichung eingesetzt ergibt a = 1. Dies ist ein Widerspruch zur ersten Gleichung. Somit ist \mathcal{B}_1 keine Basis von N, da kein Erzeugendensystem.
- (ii) Eine Basis ist ein linear unabhängiges Erzeugendensystem. \mathcal{B}_2 ist linear unabhängig, da die beiden Matrizen in \mathcal{B}_2 , keine Vielfachen voneinander sind. \mathcal{B}_2 ist ein Erzeugendensystem von N, falls span $\mathcal{B}_2 = N$:

Also ist \mathcal{B}_2 eine Basis von N.