Technische Universität Berlin Fakultät II – Institut für Mathematik G. Bärwolff, R. Nabben, R. Schneider

 $\mathrm{SS}\ 13$ 24.07.2013

Juli – Klausur Lineare Algebra für Ingenieure

Name:	Vorn	Vorname:						
MatrNr.:	. Stud	liengang	ς:					
Neben einem handbeschriebenen A4 Blatt mit Nebesondere sind keine Taschenrechner und ke					fsmittel	zugelass	sen. Ins-	
Die Lösungen sind in Reinschrift auf A4 Blätte Ihrer Matrikelnummer beschriftet sein. Mit Ble werden.								
Geben Sie immer eine kurze Begründung und vollziehbaren Bezug Ihrer Antwort zur Aufgabe / im Tutorium / im Skript" gilt nicht als Begrünes muss begründet werden, warum der Satz in de Die Bearbeitungszeit beträgt 90 Minuten .	gibt es l ndung. I	keine Pu Der ents	ınkte. "İ prechen	Nach de: de Satz	m Satz i muss zit	n der Veiert wer	orlesung den und	
Die Klausur ist mit mindestens 30 von 60 Punk	ten bes	tanden.						
Korrektur								
	1	2	3	4	5	6	Σ	

1. Aufgabe 10 Punkte Gegeben sei die Matrix $A := \begin{bmatrix} 3 & -6 & -3 & -6 & -2 \\ 0 & 0 & 1 & 3 & 0 \\ 1 & -2 & -1 & -2 & 0 \end{bmatrix} \in \mathbb{R}^{3,5}.$

- (a) Bestimmen Sie die normierte Zeilenstufenform von A.
- (b) Bestimmen Sie eine Basis von Kern(A).
- (c) Bestimmen Sie eine Basis von Bild(A).
- (d) Ist A injektiv/surjektiv/bijektiv?

2. Aufgabe 11 Punkte Gegeben sei die Matrix $B := \begin{bmatrix} 4 & 4 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix} \in \mathbb{R}^{3,3}$.

- (a) Bestimmen Sie alle Eigenwerte von B sowie die zugehörigen Eigenräume.
- (b) Ist B diagonalisierbar?
- (c) Ist B invertierbar? (d) Bestimmen Sie die Lösung des Anfangswertproblems $\frac{d\vec{y}(t)}{dt} = B\vec{y}(t), \ \vec{y}_0 = \vec{y}(2) = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

3. Aufgabe Für den Parameter $\alpha \in \mathbb{R}$ sei $C := \begin{bmatrix} 0 & 4 & 8 & -\alpha \\ -2 & \alpha & 4 & 8 \\ 0 & -1 & 0 & 1 \\ 0 & 2 & 4 & -1 \end{bmatrix}$.

- (a) Berechnen Sie die Determinante von C mit dem Laplaceschen Entwicklungssatz.
- (b) Für welche $\alpha \in \mathbb{R}$ sind die Spalten von C linear abhängig?
- (c) Für welche $\alpha \in \mathbb{R}$ ist C invertierbar?
- (d) Berechnen Sie für $\alpha = 3$ die Determinante von 2C.

4. Aufgabe 10 Punkte

Gegeben seien der Vektorraum $V:=\left\{A\in\mathbb{R}^{2,2}\middle|A\text{ obere Dreiecksmatrix}\right\}$ mit der Basis $\mathcal{B} = \left\{ \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} -1 & 0 \\ 0 & 2 \end{array} \right] \right\}$

und die lineare Abbildung
$$L:V\to V, \qquad \left[\begin{array}{cc} a & b \\ 0 & c \end{array}\right] \mapsto \left[\begin{array}{cc} -a & -2a \\ 0 & 2a-b+2c \end{array}\right].$$

- (a) Bestimmen Sie die darstellende Matrix von L bzgl. der Basis $\mathcal{B}.$
- (b) Prüfen Sie, ob $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ ein Eigenvektor von L ist. Falls ja, zu welchem Eigenwert?
- (c) Geben Sie die vollständige Abbildungsvorschrift der inversen Koordinatenabbildung $K_{\mathcal{B}}^{-1}$ an.

5. Aufgabe 11 Punkte

Gegeben seien die folgenden Abbildung

- (a) Überprüfen Sie, ob F_1 eine lineare Abbildung ist.
- (b) Uberprüfen Sie, ob F_2 eine lineare Abbildung ist.
- (c) Bestimmen Sie $Kern(F_2)$ und dessen Dimension.
- (d) Bestimmen Sie die Dimension von $Bild(F_2)$.

6. Aufgabe 8 Punkte

Gegegen sei $V = \mathbb{R}_{\leq 1}[x]$ mit der Basis $\mathcal{B} = \{4x + 2, 5x - 5\}$ und dem Skalarprodukt

$$\langle \cdot, \cdot \rangle_1 : V \times V \to \mathbb{R}, \quad \langle ax + b, cx + d \rangle_1 = \frac{1}{5}ac + \frac{1}{5}bd.$$

- (a) Bestimmen Sie mit dem Gram-Schmidt-Verfahren aus \mathcal{B} eine Orthonormalbasis \mathcal{B}_{ONB} bezüglich des Skalarprodukts $\langle \cdot, \cdot \rangle_1$.
- (b) Zeigen Sie, dass die Abbildung

$$\langle \cdot, \cdot \rangle_2 : V \times V \to \mathbb{R}, \quad \langle ax + b, cx + d \rangle_2 = 2ac - 3ad - 3bc + 2bd$$

kein Skalarprodukt auf V definiert.

(c) Durch $C = \{\vec{c_1}, \vec{c_2}, \vec{c_3}\} := \left\{ \frac{1}{7} \begin{bmatrix} 2\\3\\6 \end{bmatrix}, \frac{1}{7} \begin{bmatrix} -3\\6\\-2 \end{bmatrix}, \frac{1}{7} \begin{bmatrix} 6\\2\\-3 \end{bmatrix} \right\}$ ist eine Orthonormalbasis des \mathbb{R}^3 bezüglich des Standardskalarprodukts gegeben. Bestimmen Sie für $\vec{v} = -7\vec{e}_1$ den Koordinatenvektor $\vec{v}_{\mathcal{C}}$.