Technische Universität Berlin Fakultät II – Institut für Mathematik

Doz.: R. Kruse, C. Merdon, R. Nabben

Ass.: Beßlich, Seib

27.07.2016

SS 16

Modulprüfung "Analysis I und Lineare Algebra für Ingenieurwissenschaften" Teil: "Lineare Algebra"

						me:		
gen sind	in Rein tt bitt	nschrift e Name	auf A4 l und Ma	Blätterr	att mit Notizen sind n abzugeben. Für jed ummer schreiben. M	le Aufgabe bitte ei	n neues Blatt	verwenden. Auf
vollständ	ige Be	gründun	g an. In	sbesond	echenweg und, wenn lere soll immer klar nweg gibt es keine P	werden, welche Sä	-	
Die Bearl	beitung	gszeit fü	r die Tei	illeistun	g im Fach "Lineare	Algebra" beträgt 60	0 Minuten.	
$\frac{\text{Algebra})}{\square}$	der Kl	ausur m	indester s nach	alter F	bestanden, wenn in der Punkte erreicht v	werden.		
wissenso	chafter	n" best	anden/	anerka	nnt bekommen.			
Korrekt	ur Lir	neare A	lgebra					
1	2	3	4	Σ				
Punktza	ıhl:	An	l nalysis]	[Lineare Algebra	$\operatorname{Gesamtpu}$	ınktzahl	
			Σ		Σ		Σ	

1. Aufgabe 8 Punkte

Gegeben seien die Matrix $A := \begin{bmatrix} 1 & 2 & 0 & 1 & -3 \\ -2 & -4 & 0 & 1 & 3 \\ 3 & 6 & 1 & 3 & -6 \end{bmatrix} \in \mathbb{R}^{3,5}$ und der Vektor $\vec{b} := \begin{bmatrix} 3 \\ 0 \\ 8 \end{bmatrix} \in \mathbb{R}^3$.

- (a) Bringen Sie die erweiterte Koeffizientenmatrix $[A \mid \vec{b}]$ in normierte Zeilenstufenform.
- (b) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems $A\vec{x} = \vec{b}$.
- (c) Bestimmen Sie eine Basis von Bild(A).
- (d) Gibt es einen Vektor $\vec{v} \in \mathbb{R}^3$, sodass das lineare Gleichungssystem $A\vec{x} = \vec{v}$ keine Lösung besitzt?

(a) (3 Punkte)

$$[A|\vec{b}] = \begin{bmatrix} 1 & 2 & 0 & 1 & -3 & 3 \\ -2 & -4 & 0 & 1 & 3 & 0 \\ 3 & 6 & 1 & 3 & -6 & 8 \end{bmatrix} \xrightarrow{\text{II}+2\text{I}} \begin{bmatrix} 1 & 2 & 0 & 1 & -3 & 3 \\ 0 & 0 & 0 & 3 & -3 & 6 \\ 3 & 6 & 1 & 3 & -6 & 8 \end{bmatrix} \xrightarrow{\text{III}-3\text{I}} \begin{bmatrix} 1 & 2 & 0 & 1 & -3 & 3 \\ 0 & 0 & 0 & 3 & -3 & 6 \\ 0 & 0 & 1 & 0 & 3 & -1 \end{bmatrix}$$

$$\xrightarrow{\text{II}\leftrightarrow\text{III}} \begin{bmatrix} 1 & 2 & 0 & 1 & -3 & 3 \\ 0 & 0 & 1 & 0 & 3 & -1 \\ 0 & 0 & 0 & 3 & -3 & 6 \end{bmatrix} \xrightarrow{\frac{1}{3}\text{III}} \begin{bmatrix} 1 & 2 & 0 & 1 & -3 & 3 \\ 0 & 0 & 1 & 0 & 3 & -1 \\ 0 & 0 & 0 & 1 & -1 & 2 \end{bmatrix} \xrightarrow{\text{I-III}} \begin{bmatrix} 1 & 2 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 3 & -1 \\ 0 & 0 & 0 & 1 & -1 & 2 \end{bmatrix} = \text{NZSF}([A|\vec{b}])$$

(b) (3 Punkte)

Ausgehend von der NZSF in a): Die Nichtkopfvariablen parametrisieren die Lösungsmenge. Setze: $x_2 := s$, $x_5 := t$, $\in \mathbb{R}$. Dann gilt für die Kopfvariablen: $x_1 + 2s - 2t = 1 \Leftrightarrow x_1 = 1 - 2s + 2t$, $x_3 + 3t = -1 \Leftrightarrow x_3 = -1 - 3t$ und $x_4 - t = 2 \Leftrightarrow x_4 = 2 + t$. Somit ist die Lösungsmenge des LGS:

$$x_3 = -1 - 3t \text{ und } x_4 - t = 2 \Leftrightarrow x_4 = 2 + t. \text{ Somit ist die Lösungsmenge des LGS:}$$

$$\mathcal{L} = \left\{ \begin{bmatrix} 1 - 2s + 2t \\ s \\ -1 - 3t \\ 2 + t \\ t \end{bmatrix} \middle| s, t \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 0 \\ -3 \\ 1 \\ 1 \end{bmatrix} \middle| s, t \in \mathbb{R} \right\}$$

(c) (1 Punkt)

Eine Basis von Bild(A) wird durch die Spalten der Matrix A gebildet, bei denen in der NZSF ein Kopf steht. Nach a) sind dies die erste, dritte und vierte Spalte von A. Somit ist $\left\{ \begin{bmatrix} 1\\-2\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\3 \end{bmatrix} \right\}$ eine Basis von Bild(A).

(d) **(1 Punkt)**

Nach c) enthält eine Basis von Bild(A) drei Vektoren. Somit ist dim(Bild(A)) = $3 = \dim(\mathbb{R}^3)$. Also gibt es keinen Vektor $\vec{v} \in \mathbb{R}^3$, der nicht im Bild von A liegt. Folglich ist das LGS $A\vec{x} = \vec{v}$ immer lösbar.

2. Aufgabe 9 Punkte

Gegeben sei die Matrix $B := \begin{bmatrix} 4 & 1 & -2 \\ 0 & 7 & -6 \\ 0 & 0 & 4 \end{bmatrix} \in \mathbb{R}^{3,3}$.

- (a) Bestimmen Sie alle Eigenwerte von B.
- (b) Bestimmen Sie den Eigenraum zum kleinsten Eigenwert von B.
- (c) Zeigen Sie, dass $\begin{bmatrix} 1\\3\\0 \end{bmatrix}$ ein Eigenvektor von B ist.
- (d) Ist B diagonalisierbar? Falls ja, geben Sie eine invertierbare Matrix S und eine Diagonalmatrix D mit $B = SDS^{-1}$ an.
- (e) Ist B invertierbar?
- (f) Bestimmen Sie die Lösung des Anfangswertproblems

$$\frac{d\vec{y}(t)}{dt} = B\vec{y}(t), \quad \vec{y}_0 = \vec{y}(3) = \begin{bmatrix} 2 \\ 6 \\ 0 \end{bmatrix}.$$

(a) (1 Punkt)

B ist eine obere Dreiecksmatrix, also stehen die Eigenwerte auf der Diagonalen: $\lambda_{1/2} = 4$ und $\lambda_3 = 7$.

(b) (2 Punkte) Für den Eigenraum zum Eigenwert $\lambda_{1/2}$ gilt:

$$V_{\lambda_{1/2}} = \operatorname{Kern}\left\{B - \lambda_{1/2} \cdot I_3\right\} = \operatorname{Kern}\left\{\begin{bmatrix}0 & 1 & -2\\ 0 & 3 & -6\\ 0 & 0 & 0\end{bmatrix}\right\} \stackrel{\text{II-I}}{=} \operatorname{Kern}\left\{\begin{bmatrix}0 & 1 & -2\\ 0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}\right\}$$
$$= \operatorname{span}\left\{\begin{bmatrix}1\\ 0\\ 0\end{bmatrix}, \begin{bmatrix}0\\ 2\\ 1\end{bmatrix}\right\}$$

(c) (1 Punkt) $B\begin{bmatrix} 1\\3\\0 \end{bmatrix} = \begin{bmatrix} 7\\21\\0 \end{bmatrix} = 7\begin{bmatrix} 1\\3\\0 \end{bmatrix}$.

Also ist $\begin{bmatrix} 1\\2\\0 \end{bmatrix}$ ein Eigenvektor von B zum Eigenwert 7.

(d) (3 Punkte) B ist diagonalisierbar, falls die algVFH gleich der geomVFH für alle Eigenwerte ist. Nach a) bzw. b) ist $\lambda_{1/2}$ eine doppelte Nullstelle des char. Polynoms und die algVFH von $\lambda_{1/2}$ ist somit 2. Die geomVFH von $\lambda_{1/2}$ ist ebenfalls 2, da nach b) der zugehörige Eigenraum zweidimensional ist. Die algVFH von λ_3 ist nach a) gleich 1. Da die geomVFH eines Eigenwerts maximal so groß ist, wie die algVFH, aber mindestens 1, ist auch die geomVFH von λ_3 gleich 1. Also stimmt die algVFH mit der geomVFH für alle Eigenwerte überein und B ist folglich diagonalisierbar.

Eine Diagonalisierung von B ist: $B = SDS^{-1}$ mit $S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 1 & 0 \end{bmatrix}, D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7 \end{bmatrix}.$

- (e) (1 Punkt) B ist invertierbar, falls bijektiv. Alle Eigenwerte von B sind verschieden von B. Der Kern von B besteht daher nur aus dem Nullvektor und B ist injektiv. Aus dem Dimensionssatz folgt, dass B auch surjektiv und damit bijektiv, also invertierbar, ist.
- (f) (1 Punkt) Lösung mit der Eigenvektormethode: $\begin{bmatrix} 2 \\ 6 \\ 0 \end{bmatrix}$ ist Eigenvektor von B zum Eigenwert 7. Daraus folgt: $y(t) = e^{\lambda_3(t-3)} \begin{bmatrix} 2 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 2e^{7(t-3)} \\ 6e^{7(t-3)} \\ 0 \end{bmatrix}$.

3. Aufgabe 6 Punkte

Für den Parameter $\alpha \in \mathbb{R}$ sei $C := \begin{bmatrix} 0 & -1 & 0 & 0 \\ 2 & 7 & 1 & 1 \\ \alpha & -9\alpha & -4 & -3 \\ -1 & -8 & 1 & 0 \end{bmatrix} \in \mathbb{R}^{4,4}$.

- (a) Berechnen Sie die Determinante von C mit dem Laplaceschen Entwicklungssatz.
- (b) Für welche $\alpha \in \mathbb{R}$ sind die Spalten von C linear abhängig?
- (c) Für welche $\alpha \in \mathbb{R}$ ist C invertierbar?
- (d) Berechnen Sie für $\alpha = -2$ die Determinante von $-2C^T$.
- (a) **(2 Punkte)**

$$\det(C) = \det\left(\begin{bmatrix} 0 & -1 & 0 & 0 \\ 2 & 7 & 1 & 1 \\ \alpha & -9\alpha & -4 & -3 \\ -1 & -8 & 1 & 0 \end{bmatrix}\right) = \underbrace{(-1)(-1)\det\left(\begin{bmatrix} 2 & 1 & 1 \\ \alpha & -4 & -3 \\ -1 & 1 & 0 \end{bmatrix}\right)}_{\text{Entwicklung nach der ersten Zeile}}$$

$$= \underbrace{1 \cdot \det\left(\begin{bmatrix} \alpha & -4 \\ -1 & 1 \end{bmatrix}\right) + (-1) \cdot (-3) \cdot \det\left(\begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}\right)}_{\text{Entwicklung nach der ersten Zeile}} = \alpha - 4 + 3(2 + 1) = \alpha + 5.$$

Entwicklung nach der dritten Spalte

(b) (1 Punkt)

Die Spalten von C sind genau dann linear abhängig, wenn det(C) = 0, also genau dann, wenn $\alpha = -5$.

(c) **(1 Punkt)**

C ist genau dann invertierbar, wenn die Determinante von 0 verschieden ist, also für alle $\alpha \in \mathbb{R}, \alpha \neq -5$.

(d) **(2 Punkte)**

Nach a) ist für $\alpha = -2 \det(C) = 3$. Somit ist $\det(-2C^T) = (-2)^4 \det(C^T) = (-2)^4 \det(C) = 16 \cdot 3 = 48$.

4. Aufgabe

7 Punkte

 $\text{Sei } V := \left\{ A \in \mathbb{R}^{2,2} \middle| A \text{ ist obere Dreiecksmatrix} \right\} \text{ mit der Basis } \mathcal{B} := \left\{ \left[\begin{array}{cc} 0 & 4 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 6 & 0 \\ 0 & 2 \end{array} \right], \left[\begin{array}{cc} -6 & 4 \\ 0 & 0 \end{array} \right] \right\}.$

(a) Bestimmen Sie ausgehend von \mathcal{B} eine Orthonormalbasis \mathcal{B}_{ONB} von V bezüglich des Skalarprodukts

$$\langle \cdot, \cdot \rangle_V : V \times V \to \mathbb{R}, \quad \left\langle \left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right], \left[\begin{array}{cc} d & e \\ 0 & f \end{array} \right] \right\rangle_V = \frac{1}{18}ad + \frac{1}{4}be + \frac{1}{2}cf.$$

(b) Beschreibt die Abbildung

$$\langle \cdot, \cdot \rangle_{\star} : V \times V \to \mathbb{R}, \quad \left\langle \left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right], \left[\begin{array}{cc} d & e \\ 0 & f \end{array} \right] \right\rangle_{\bullet} = 4ad + 2be$$

ebenfalls ein Skalarprodukt auf V?

(a) (5 Punkte) Wir bestimmen mit Gram-Schmidt eine Orthonormalbasis:

$$Q_1 = \frac{\begin{bmatrix} 0 & 4 \\ 0 & 0 \end{bmatrix}}{\begin{bmatrix} 0 & 4 \\ 0 & 0 \end{bmatrix}} = \frac{1}{\sqrt{\frac{1}{4}4^2}} \begin{bmatrix} 0 & 4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}.$$

$$L_2 = \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix} - \underbrace{\left\langle \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \right\rangle}_{\bullet} \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}.$$

$$Q_2 = \frac{\begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}}{\begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}} = \frac{1}{\sqrt{\frac{1}{18}6^2 + \frac{1}{2}2^2}} \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}.$$

$$L_{3} = \begin{bmatrix} \begin{bmatrix} 0 & 2 \\ -6 & 4 \\ 0 & 0 \end{bmatrix} - \underbrace{\left\langle \begin{bmatrix} -6 & 4 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \right\rangle}_{=2} \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} - \underbrace{\left\langle \begin{bmatrix} -6 & 4 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \right\rangle}_{=-1} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}.$$

$$Q_3 = \frac{\begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}}{\begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}} = \frac{1}{\sqrt{\frac{1}{18}(-3)^2 + \frac{1}{2}1^2}} \begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}.$$

Damit erhalten wir $\mathcal{B}_{ONB} = \left\{ \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.

(b) (1 Punkt) Es gilt: $\left\langle \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\rangle_{\star} = 0$. Also ist die Abbildung nicht positiv definit und somit kein Skalar-