Wintersemester 2017/18 13. April 2018

Doz.: R. Schneider, P. Winkert Ass.: H. Eble, B. Kutschan

Modulprüfung "Lineare Algebra für Ingenieurwissenschaften"

Name:						Vo	rname:
Matr	Nr.:					St	ıdiengang:
Die Lö Blatt v	sungen verwend	sind in len. Auf	Reinsc jedes I	hrift aı Blatt bi	uf A4 B itte Nar	lättern ne und	zen sind keine weiteren Hilfsmittel zugelassen. abzugeben. Für jede Aufgabe bitte ein neues Matrikelnummer schreiben. Mit Bleistift oder ertet werden.
ze, abe	er vollst	tändige	Begrün	dung a	an. Insb	esonder	l, wenn nichts anderes gesagt, immer eine kur- e soll immer klar werden, welche Sätze oder zw. Rechenweg gibt es keine Punkte!
Die Be	arbeitu	ngszeit	beträgt	90 Mi	nuten.		
Die Kl	ausur is	st mit 2	2 Punk	ten bes	tanden.		
• r r s	xeit den nir bel neldun StuPO) nir bel genomi	r Prüfu kannt i ng vora) kannt i	ing fül st, das ussetzt st, das gesund	ren kas die 7 t, ande	ann. (§ Teilnah ernfalls Prüfu	39 Alame and die Pr	t, dass ihre Nichterfüllung zur Ungültiges. 2 Satz 4 AllgStuPO) der Prüfung eine ordnungsgemäße An- üfung nicht gültig ist. (§ 39 Abs. 2 Allg- e unter bekannten und bewusst in Kauf ichtigungen abgelegt wird, grundsätzlich
Korre	ktur						
1	2	3	4	5	6	Σ	

1. Aufgabe (9 Punkte)

Gegeben seien

$$A := \begin{pmatrix} 1 & -2 & 1 \\ 1 & -1 & 1 \\ -1 & 2 & -1 \end{pmatrix} \in \mathbb{R}^{3,3} \quad \text{und} \quad \vec{b} := \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^3.$$

- (a) Bringen Sie die erweiterte Koeffizientenmatrix $[A|\vec{b}]$ in normierte Zeilenstufenform.
- (b) Bestimmen Sie die Lösungsmenge des reellen linearen Gleichungssystems $A\vec{x} = \vec{b}$.
- (c) Bestimmen Sie $\dim(\text{Bild}(A))$ und $\dim(\text{Kern}(A))$.
- (d) Geben Sie eine Basis des Bildes von A an.
- (e) Geben Sie einen Vektor an, der nicht im Kern von A liegt.

2. Aufgabe (8 Punkte)

Gegeben sei die Matrix
$$B := \begin{pmatrix} -3 & 2 & 0 \\ 0 & -3 & 0 \\ 1 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3,3}$$
.

- (a) Bestimmen Sie alle Eigenwerte von B.
- (b) Bestimmen Sie den Eigenraum und die geometrische Vielfachheit des betragsmäßig größten Eigenwerts von B.
- (c) Ist B diagonalisierbar?
- (d) Bestimmen Sie die Lösung des Anfangswertproblems

$$\frac{d\vec{y}(t)}{dt} = B\vec{y}(t), \qquad \vec{y}_0 = \vec{y}(2) = \begin{pmatrix} -8\\0\\2 \end{pmatrix}.$$

3. Aufgabe (7 Punkte)

Betrachten Sie die Matrix

$$C := \begin{pmatrix} 2 & 4 & 0 & 2 \\ 4 & -2 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 5 & 0 & 1 & -1 \end{pmatrix} \in \mathbb{R}^{4,4}.$$

- (a) Bestimmen Sie die Determinante von C mit dem Laplaceschen Entwicklungssatz (angewandt auf 4×4 und 3×3 -Matrizen).
- (b) Betrachten Sie nun die reellen 4×4 -Matrizen

$$C_1 := \begin{pmatrix} 0 & 1 & 1 & 1 \\ 4 & -2 & 0 & 2 \\ 2 & 4 & 0 & 2 \\ 5 & 0 & 1 & -1 \end{pmatrix} \quad \text{und} \quad C_2 := \begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & -1 & 0 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{5}{2} & 0 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}.$$

Bestimmen Sie $\det(C_1)$ und $\det(C_2)$ aus $\det(C)$ anhand gewisser Eigenschaften der Determinante, d.h. **ohne Verwendung** der Laplace-Entwicklung.

(c) Berechnen Sie det $(C^T \cdot C^{-1})$.

4. Aufgabe (6 Punkte)

Welche der folgenden Abbildungen sind linear? Beweisen oder widerlegen Sie Ihre Aussagen.

(a)
$$L_1 : \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \longmapsto \begin{pmatrix} v_2 - 4v_3 \\ 2v_1 \\ 2 \end{pmatrix}$$

(b)
$$L_2: \mathbb{R}_{\leq 1}[x] \longrightarrow \mathbb{R}^{2,2} \ ax + b \longmapsto \begin{pmatrix} 2a + b & b \\ b & a \end{pmatrix}$$

(c)
$$L_3: \mathbb{R}^{2,2} \longrightarrow \mathbb{R}_{\leq 1}[x], \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto ax + (cd + b)$$

5. Aufgabe (9 Punkte)

Gegeben sei der Vektorraum $V:=\left\{ax^3+bx^2+c(x+1)\;\middle|\; a,b,c\in\mathbb{R}\right\}\subset\mathbb{R}_{\leq 3}[x]$ mit der Basis

$$\mathcal{B} := \left\{ \vec{b}_1 := x^3, \ \vec{b}_2 := x^2, \ \vec{b}_3 := x + 1 \right\}$$

und die lineare Abbildung

$$L\colon V\longrightarrow V$$

$$ax^3 + bx^2 + c(x+1) \longrightarrow 2(a+c)x^3 + (a+c)x^2 + 3c(x+1).$$

- (a) Berechnen Sie die darstellende Matrix $L_{\mathcal{B}}$ von L bezüglich der Basis \mathcal{B} .
- (b) Gegeben seien nun eine zweite Basis

$$\mathcal{B}' := \left\{ \vec{b}_1' := x^3 + x^2, \ \vec{b}_2' := 2x^2, \ \vec{b}_3' := 3(x+1) \right\}$$

von V und Transformationsmatrizen $S_{\mathcal{B}\to\mathcal{B}'}=\begin{pmatrix}1&0&0\\-\frac{1}{2}&\frac{1}{2}&0\\0&0&\frac{1}{3}\end{pmatrix}$ und $S_{\mathcal{B}'\to\mathcal{B}}=\begin{pmatrix}1&0&0\\1&2&0\\0&0&3\end{pmatrix}$.

Berechnen Sie die darstellende Matrix $L_{\mathcal{B}'}$ von L bezüglich der Basis \mathcal{B}' mithilfe der Matrizen $L_{\mathcal{B}}, S_{\mathcal{B} \to \mathcal{B}'}$ und $S_{\mathcal{B}' \to \mathcal{B}}$.

(c) Bestimmen Sie $L(4x^2)$ und geben Sie eine Basis von Kern(L) an.

6. Aufgabe (6 Punkte)

Betrachten Sie die Matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \in \mathbb{R}^{3,3}$.

Der Vektorraum \mathbb{R}^3 sei mit dem Standardskalarprodukt ausgestattet.

- (a) Bestimmen Sie aus den Spalten von A mittels Gram-Schmidt-Verfahren eine Orthonormalbasis des \mathbb{R}^3 bezüglich des Standardskalarprodukts.
- (b) Geben Sie die QR-Zerlegung von A an.

Gesamtpunktzahl: 45 Punkte