Logic Games and Automata — Memory Log and

FAQ

1 Memory Log

Question 1.1 How is LTL defined, what is the syntax and semantics?

Question 1.2 How did we solve LTL model checking?

Answer. Model checking for LTL can be done effectively using an automaton
approach because LTL is language invariant. For every ¢ and every a € 27" we
construct a Biichi automaton B such that o = ¢ <= o € L(B).

First you transform the given formula into an equivalent reduced formula,
i.e. we consider only formulas without L,V,F, G,B. That means only propo-
sitional symbols, T, the Boolean connectives A and — and temporal operators
U and X can appear in a formula. Give this formula, we then construct a non-
deterministic Biichi-automaton that, at each position of a run, guesses the set
of subformulas that are currently true and then checks whether the guess was
correct. For formulas of the form X¢ we can check locally via a simple transi-
tion whether ¢ holds at the next step. For every formula of the form Uy we
encode this information in the accepting condition of our generalized Biichi au-
tomaton. Then construct the appropriate automaton for the transition system
Bg, compute the intersection with B-, and test for emptiness by checking the
existence of a reachable strongly connected component. The construction takes
exponential time in the size of the formula and it can be shown that LTL model
checking is PSPACE complete.

Question 1.3 How do we compute the intersection of the languages of two
NBAs?

Question 1.4 Roughly how did we translate ¢ € LTL into a NBA?
Question 1.5 How did we check if £(B) # 07

Question 1.6 Explain which of the logics we discussed are stronger/weake than
each other?

Question 1.7 How did we define games?

Question 1.8 How did we define parity games?

Question 1.9 How did we prove that parity games have a positional winning
strategy?

Question 1.10 How did we prove that parity games are determined?

2 'Transition systems

Question 2.1 What is the model checking problem? What is its input and
what is the output? How is it connected to real-world situation when we have a
piece of software or hardware and we want to know whether is has some desired
property?

Answer. The Model checking problem of a logic L[o] takes as an input a 0-TS
S, a state v € V¥ or a run a € P(S) and a formula ¢ € L[o]. The output is
the decision whether (S, s) = ¢ or (S,a) = ¢. A real world application of this
is checking if a system has some property that can be described by a formula.
A classical example would be whether a run in a system has the ability to run
into a deadlock.

Question 2.2 Define bisimulation. When are two transition systems bisimilar?
Answer. S, T be two o-TSs. A bisimulation is a relation R C VS x V7 such
that R # () and for all (s,t) € R hold:

(B1) 5(s) = (1)
(B2) For all s’ € N(s) there exists ¢ € N(¢) such that (s',t') € R
(B3) For all t' € N (t) there exists s’ € N(s) such that (s',t') € R

Let so € VS,tg € V7. (S,s0) and (T, to) are called bisimilar (written (S, sg) ~
(T, to)), iff there exists such a bisimulation R with (sg,tg) € R.
reference def 1.11

Question 2.3 Is union of two bisimulations a bisimulation?
Answer. Yes.

PROOF. Let B := By U By the union of two bisumulations. (B1) clearly holds.
For (B2) let s € B, clearly for a s’ € N(s) N B; the required t' exists via (B2)
of B;. So suppose s’ € N(s)\ B; = N(s)N B; but then the required ¢’ exists via
(B2) of B;. (B3) is analogous. O

Question 2.4 We say that two states are bisimilar if there exists a bisimulation
between them. Is the relation of being bisimilar an equivalence?
Answer. Yes.

PROOF. Bisimulation is clearly reflexive, take B := {(s,s) : s € V}. Bisimu-
lation is symmetric, take B~ := {(¢,s) : (s,t) € B} and swap (B2) and (B3).
Bisimulation is transitive, take B := By o Bs. O

Question 2.5 What does it mean for two runs (of a system or two different
systems) to be indistinguishable?

Answer. Let T be a o-TS. A run of T is an infinite word a € (V7)* such
that (ag,®i+1) € ET for all i € N. Two runs a = ajas ...,y = cice... are
indistinguishable if 3(«) = B(a1)B(az) - - = B(7).

Question 2.6 We say that that system S is similar to system T if for each run
in T there is an indistinguishable run in S. Is it true that if S is similar to T
and at the same time T is similar to S then S and T are bisimilar? Prove your
answer.

Answer. No. Counter example: typical tree example, in which S§; makes
decision of branching before Ss. 81, Sy are similiar, because no matter what S;
chooses, the other one can always replicate the run, which is not possible when
their turns are right after the move of the other TS.

Question 2.7 How does one algorithmically solve the problem of determining
whether two transition systems are bisimilar?
Answer. By solving the bisimulation game. (Chapter 2.2)

3 Games

Question 3.1 Define game, play and strategy and winning strategy.
Answer. A game G := (V, V}, E, vp, () consists of an arena A := (V, 1}, E), an
initial position vg € V and a winning condition 2 C V“.

A play on A is a maximal walk ¢ in the digraph (V, E). v is finite if ends in a
leaf or infinite. P(A) :={v € V*UV¥ | v is a play no A}. P(A,vg) denotes all
plays that start in vg.

A strategy is a partial mapping f: V*V, — V such that f(v) is definied for all
walks © = vo,. .., v, with v, € V,, N(v,) # 0, f(v) € N(vy,)

Question 3.2 What does one have to do to prove that a game is winning for
one of the players?
Answer. Show that a winning strategy exists.

Question 3.3 What does it mean for a game to be determined? Are all games
determined?

Answer. A game is determined if a player has a winning strategy. Not all games
are determined. Ultrafilters can be used to define non determined games.

Question 3.4 What are simple games? How does one solve them algorithmi-
cally?

Answer. Simple games are games where the winning condition is either V* or
(). To solve a simple game start by marking all vertices in Vj with no successors
as part of Wi. We then add all nodes v € Vi to Wy if N(v) C Wiy and allv € V}
if N(v) N Wy # 0 until completion.

4 Modal Logic

Question 4.1 Define syntax and semantics of modal logic.
Answer. Let o be a signature, then ML[o] contains

e the operators A, V,—, T, L are contained with their usual semantics
e P e MLo] for all P € o with (S,s) P <= s€P.
o If ¢ € ML[o], then O,y € ML|[0]

~ (8,5) | 0% <= 35" € N(5).(S,) [= ¥,
~ (8,5) F O = Vs’ € N(5).(8,) =

Question 4.2 What does it mean for two ML formulas to be equivalent?
Answer. 1, = 1), if for all 0-TS S and s € VF (S,5) = ¢ <= (S,5) |= ¥s.

Question 4.3 What does it mean for a logic to be bisimulation invariant?
Answer. Let L[o] be a logic, let S, Sy be two o-TS, let s; € V1 55 € V52
with

(S1,81) ~ (S2,82) = ((S1,81) F ¢ <= (S2,82) E 9)

Question 4.4 How does one algorithmically solve the model checking problem
for modal logic?
Answer. By solving the game (Def. 3.12).

Question 4.5 How would you prove that there is no ML formula which is true
in a transition system if and only if the transition system contains a cycle?
Answer. Let ¢p € ML[o] be a formula that is true iff (S,s) is contained in
a cycle. Then the tree (7, t) unraveling of (S, s) is bisimilar, but contains no
cycle.

5 Temporal Logics

Question 5.1 Define syntax and semantics of LTL. Make sure that you under-
stand the difference between formula being satisfied by a run and by a state.

Answer. X, F, G, U, B. (S,a) |= ¢ if the path satisfies the formula, and
(S,s) E pifall a € P(S, s) satisfy ¢. Before has the semantics that if there is
a point v; on a run a = vyvy ... at which 1y holds, then for all j < i ¢; holds.

Question 5.2 Missing img(18)

Question 5.3 Define syntax and semantics of CTL. CTL is the "extension" of
LTL by existential path quantification E. However CTL does not allow nested
uses of o € {G,F, X} such as A oo ¢. This is again allowed in CTL*, hence
every LTL formula has an equivalent CTL* formula.

Question 5.4 Missing img(20)

Question 5.5 What does it formally mean for one logic to be stronger or more
expressive than another?

Answer. That there is a formula in the stronger logic that can not be expressed
in the weaker logic.

Question 5.6 How does one prove that one logic is not stronger than another?
In other words how does one usually show that there are properties expressible
in one logic which are not expressible in another?

Answer. By finding a formula that is not expressible in the other logic and
claiming that the proof for this is rather involved. In the case of ML ¢ LTL,
we used that fact £(S,s) = L(T,t) = (S, s) =rr1, L(T,t), and that ML can

distinguish this, take for example the classic branching example.

Question 5.7 Is LTL a stronger (more expressive) logic than CTL or vice
versa?

Answer. No. CTL is not stronger that LTL: See FGP € LTL and AFAGP €
CTL. LTL is not stronger than CTL, take Eo p, ¢ € CTL, o € {X,F,G,U,B}
But LTL is weaker than CTL*.

Question 5.8 Give a diagram of which logic is stronger than which and high-
light which logics are incomparable.

N W L™ &

oy Zz

Oq O/CTL < * - _TJ ?_MLbD
MC Z
e ™

Question 5.9 Can you classify the complexity of the Model-Checking problem
for each of the logics we discussed in the lecture? How does this relate to the
diagram you just gave? (What about the Modal-mu calculus in this scenario?)

6 Automata on Infinite Words

Question 6.1 What is the difference between finite automaton and transition
system?

Question 6.2 Define Biichi automaton and generalized Biichi automaton.
Answer. A Biichi Automata is a tuple A := (Q, 3, qo, A, F). A accepts a run
p if Inf(p) N F # 0.

A generalised Biichi Automata is a tuple B := (Q, X%, qo, A, Fy,. .., Fy). B ac-
cepts arun p if Inf(p) N F; # 0 forall 1 <i < k.

Question 6.3 How does one translate a transition system into a Biichi automa-
ton?

Answer. See Definition 5.11. Summary: Let & be a ¢-TS and A the con-
structed Biichi-Automaton.

ot

L Q=VSU{q},

2. ¥ =9,

3. A:={(s,8(s"),5) | (s € VSands' € N(s)or(s = qo,s" = s0)},
4. F=Q

Question 6.4 Missing img(29)

Question 6.5 Are Biichi recognizable languages closed under: a union, b in-
tersection, ¢ complement

Question 6.6 Let £ and L2 be two Biichi recognizable languages. How does
one construct an automaton which accepts the language £1 U Lo7

Answer. Let Ay, A5 be the corresponding Biichi Automata. Remove ¢, in
both. Then A := A; U Ay and ¢o with A := {(qo, 8(s1), s1), (90, 8(s1),s1)} U
AU Ay

Question 6.7 Does there exist to every Biichi automaton an equivalent deter-
ministic Biichi automaton? If the answer is yes, how does one construct it?
If the answer is no, what is the example of a Biichi recognizable language for
which there is no deterministic Biichi automaton?

Answer. No, non-determinism yields a more powerful automaton scheme. One
way to see this is the language £ = (0 + 1)*0¥ which is obviously Biichi recog-
nizable.

Assume there is a deterministic automaton B with |Q| states that accepts L.
Consider a = (8)* ¢ L with 8 := 0/9*!1 and for any i we have v, :=
gl0v e L.

~—

!
Since 7 is a prefix of «, the automaton must have the same unique run up

until this point by determinism. Since 7; € L for any ¢, the automaton must
visit an accepting state when parsing the |@Q| + 1 zeros of 8 because it would
otherwise never visit an accepting state in even longer stretches of zeros (by
determinism) and would thus not accept all ;. Since 5 occurs infinitely often
in a, the automaton accepts a ¢ £ which is a contradiction.
Question 6.8 Characterize the languages accepted by deterministic Biichi au-
tomata.
Answer. A language L C X¥ is deterministically Biichi-recognisable if and
only if there is a regular language K C ¥* such that L = lim K.

Proof: Let B = (Q,%,q,0,F) be a DBA with L(B) = L. Let A =
(@, %, qo, 9, F) be the corresponding deterministic finite automaton (DFA), i.e.,
A is B considered as a DFA. Then, for a € X%, we have:

« € L(B) <= the unique run p of B on « visits ¢ € F infinitely often
<= there are infinitely many ¢ > 0 such that the run of Aon ap...; endsin g € F

<= there are infinitely many i > 0 with ag...a; € L(A)
< «a € lim(L(A)).

Question 6.9 How does one test whether the language accepted by a Biichi
automaton is empty? Where is this used?

Answer. Convert Biichi Automaton into a generalized Biichi Automaton. Then
Run "NBA Emtpiness Test". Algorithm:

1. Compute G(B)
2. Compute the SCCs of G(B)

3. Compute the SCCs having a state of F’
4. Compute which SCCs are reachable from ¢qq. If there is one, accept, oth-
erwise reject.

Question 6.10 Consider transition system 7 and LTL formula ¢ such that
(T, to) ¥ . Does this imply that (T ,tg) E —p?

Answer. No, the semantics of LTL are universal, meaning (7 ,to) satisfies ¢ if
and only if all paths o € P(T, o) satisfy . Obviously this doesn’t mean when
there exists a path that does not satisty the formula that all paths don’t satisfy
the formula.

Question 6.11 Given an LTL formula ¢ and transition system 7, how does
one verify whether 7 |= ¢? Describe each step in as much detail as possible.
Answer. Let S be a 0-TS, vg € VS, p € LTL. Algorithm

1. Construct an NBA B_, for - of size 20(l#D)

2. Construct an NBA Bg for (S, sg) of size O(||S]||)

3. Construct the NBA B with £ = B-, N Bs of size O(||Bs - ||B-y||)

4. Test in linear time whether £(B) = (), if yes accept, otherwise reject.

Question 6.12 Why is proving co-NP-hardness of LTL model-checking more
natural than proving NP-hardness?

Answer. As one can see above the satisfiability problem is solved by checking
—, which yields in co-NP.

Question 6.13 What is the difference between generalized Biichi automaton
and Muller automaton?

Answer. Let @ be the set of states, then the accepting condition is given as
F C 29, Muller automaton accepts a run p if Inf(p) € F. Hence in contrast
to (generalised) Biichi automata, where for any accepting run it must hold for
all F € F that Inf(p) N F # 0, Muller automata list explicitly which runs are
accepting and reject all other runs. Note that one can safely remove all supersets

F’' O F from F if both F, F’ € F.

7 Modal p-calculus

Question 7.1 Define monotone function and fixed point
Answer. Let M be a set. F: 2™ — 2M 4 function.

o Fis called monotone if F(X) C F(Y) for X, Y € M with X CY
o X € M is called fixed point, if F(X) =X

Question 7.2 What does the Knaster-Tarski theorem say? Can you prove it?
Answer. Let M be a set, F : 2 — 2M 4 function. F has an unique least/
greatest fixed point namely

e u(F):={XeM|FX)CX}
e Y(F)={XeM|XCFX)}

ProoOF. We only proof for u(F). v(F) is analogous. Let A := {X € M |
F(X) C X}Y =(\xea X. Forall X € A we know Y C X. By monotonicity
F(Y)C F(X)=X. Hence F(Y) C(xea X =Y.

F(Y) C Y implies F(F(Y)) C F(Y), thus F(Y) € A, thus Y C F(Y). Hence
F(Y) =Y. Proof for unique smallest fixpoint is by assumption of a smaller one
which yields a contradiction. O

Question 7.3 How does one compute least and largest fixed points? Can you
prove it?

Answer. We can computer them by induction. For p(F) start with X? := (),
Xotl .= P(X%), which yields X° C X! C X2 C ... C X% C u(F). Case for
v(F) follows analogously by starting in M instead of (.

Question 7.4 Define syntax and semantics of modal p-calculus.
Answer. Syntax see definition 6.15. Semantics see definition 6.17

Question 7.5 Why does one have to be careful with the use of negation in
modal p-calculus?

Answer. Having negation yield in anti-monotonous functions F which then
yield no fixed point anymore. More precisely

o For all X € Symb \ neg(y), Ff;.x is monotone.

o For all X € Symb\ pos(yp), FSX is anti-monotone.

Question 7.6 Given a fixed formula and a fixed transition system, can you
give us the states that satisfy the formula?

Answer. Shouldn’t be to hard, just do the recursion until a fixed point is
reached. Check for u or v.

Question 7.7 Can you interpret the following p-calculus formulae pX (X V
OP),uX (X ANOP),vX(Q NOX),vY (Y vV OP) etc.
Answer.

e uX(XVOP). X° =10, FS‘X(XO) denotes all the vertices that has a
neighbor in which P holds. In the next iteration we get all vertices of X°
and all the vertices which fullfil ¢ P, which are already in X°, thus we’ve
reached already a fixed point

e pX(X AOP). X° = (. We can already see, that this yields) over all,
since X starts empty. Thus () is the fixed point

e vX(QAOX). X° = VS, In the first iteration we have all vertices there are.
In the second we have all vertices s € QS. In the third we have all vertices
that are in Q° and whos neighbors are in the result of the second iteration,
and so on... This leaves with a set of vertices from which we can reach @
by going in some direction which is equivalent to 1y = EGQ € CTL. Thus
the set of vertices in which 1 holds are part of the fixed point.

e Y (Y VOP). Lame. We always remain in VS,

8 Parity Games

Question 8.1 Define parity games.
Answer. See definition 7.1

Question 8.2 Explain and define the translation from modal logic to simple
games and from modal p-calculus to parity games.
Answer.
o Modal Logic — simple games. Let S be a ¢-TS and let ¢ € ML. The
arena A(S, p) := (V,Vp, E) is defined as follows:
-V i={(¢,s) | ¥ € cl(p),s € VE}
— Vo :={(,s) € V|1 =0x or ¢ =x1Vxz or ¢ is literal with (S,s) =
v}

— FE = {(¢,s),®',s) | (= Oxory = Oxandy’ = yors €
N(s))or(¢ = x1Axz or ¢ = x1Vx2) and s’ = s and ¢’ = x;1 or ¢/ =

X2}
» Modal p-calculus — parity games. Let S be a 0-TS, ¢ € L, [0]. The arena
A(S,) := (V, Vi, E) is defined as follows:
— Vi={(,s) | ¥ € cl(p),s € VS}
- Vo:={(,s) eV |¢p=0x orp =x1Vxz or ¢ € {P,—P, L} with (S,s) [~
v}
— ((9), W) € B if
x 1) =ox € {0,0} and ¢’ = x and s’ € N(s)
% 1) =x10x2,0 € {A,V}and ¢’ € {x1,x2} and s’ = s
x p=pXxyorv=vXyand ¢y =yxyand s =s

% 1) = X for some X € Symb\ free(p) and ¢ = Dy(X) and s’ = s

Question 8.3 What is an attractor? What are traps? What is a dominion?
Give a formal definition
Answer. Let U C V. We define Attr,(U) inductively.

o Atf)(U)=U

o At (U) == AttrS (U)U{u €V, | 3v e N(v) NAttri} U{u e V; | Vo €
N(v) C Attr) }

That means there is a (attractor) strategy such that for all u € Attry Player p
is able to get into U.

VA Attr;f is a p-trap, which means Player p is not able to leave the trap,
otherwise there would be a vertex v with which Player p will in U, than v is in
the attractor. That’s why this is called a trap.

Dominions are needed for the involved Parity-Games proof. A dominion for
player p is a subset of the winning region in which player p can force the game
to stay entirely within the dominion while still winning it.

Question 8.4 Explain the recursive algorithm for solving parity games given
in the lecture notes.

Question 8.5 Can you sketch the idea behind the quasi-polynomial Zielonka
algorithm?

Answer. The quasi-polynomial algorithm is essentially 3 copies of the exponen-
tial time algorithm. However, we pass additional precision parameters p,,pi—,
artificially restricting the maximum depth of the search tree. The idea is, when
recursively looking for finer and finer dominions (recall that Zielonka recursively
computes parts of the winning region we called W} in the proof of positional
determinacy), there can ever only be 1 part that is bigger than half of the entire
winning region.

Question 8.6 How do parity games relate to the p-calculus?

Answer. They can be used to do model checking on L,. Parity games can
also be modeled by a L, formula and a transition system. Hence the coincide
exactly in their expressiveness.

Question 8.7 Describe how Model Checking for the p-calculus can be reduced
to solving parity games? What are the implications on the running time?
Answer. A game with size O(||S||-|¢|) can be constructed. Hence the running
(I15]| - |¢|)O(10g(|5|'|90|))

time is

10

9 Notable Formulas

9.1 CTL* QL#
vX.PAQOX € L, but there is no equivalent formula in CTL".

9.2 FO #CTL*

EF P € CTL" but there is no equivalent formula in FO as the formula expresses
a global property. But on the other hand FO can detect circles, which all
bisimulation invariant logics, and hence CTL", cannot.

9.3 LTL+#CTL

FGP € LTL has no equivalent formula in CTL (CTL does not allow nesting of
F, G, X until another A or E). EXP € CTL has not equivalent formula LTL.

9.4 LTL,CTL C CTL"
By definition.

9.5 ML™C L,

For both logics to be equivalent it has to hold that for each TS (S, s) and every
formula ¢ € L, there has to be a 1) € ML™ such that

(S:s)Fe=(Ss)EV

Since (S, s) has an infinitely large tree unraveling (7', t) such that (S,s) ~ (T, t)
there has to be an limit ordinal such that ¢ can describe properties of L,,
but since there are infinitely many infinitely large TS that’s not possible, thus
ML C L,,. Proof of other direction is rather involved and left as an excercise
for the reader :)

9.6 ML ¢ LTL

Let ¢ = O1p € ML, then there is no LTL formula. (see 9.3). Another way to see
this is the classic branching example of 2 non-bisimilar transition systems that
have the same language. Since we know that LTL is language invariant, LTL
cannot differentiate between the two systems. ML, however, can do so easily by
O(OP A O—P). Note that the LTL formula X(XP A X—P) is unsatisfiable.

10 Translation of formulas

101 CTL =L,
normal stuff as usual. Let ¢ € CTL,p € L,

11

1. ¢ = EG let ¢ = vX.(¢) AOX),

2. ¢ = E(@UY) let ¢ = pX.(XV () A OX)).

10.2 ML = FO

We can recursively construct a formula ¢(z) with a free variable to simulate the
modalities. Boolean combinations are trivial. Let ¢ € ML, » € FO, (S, s) be a
o-TS.

1. Let ¢ = O, then ¢(x) := Vy(E(z,y) A p(x)).

2. Let ¢ = O, then ¢(z) := Jy(E(z,y) AY(x)).

10.3 ML =— ML

common-part is trivial, except A, V. Let ¢ € ML, ¢ € ML>™
=11 A let @ = A{e1,92} and ¢ = 1 V g let ¢ = /{91, 12}
104 LTL — CTL"

For each ¢ € LTL,Ap € CTL".

Note that FO, ML formulas have only finite reach, while LTL, CTL, CTL*, L,,, ML™
have infinitely large reachability.

11 Important Algorithm

11.1 Solve Simple Games

Assume all infinite games are won by player 0, otherwise change the roles of the
players. Then player 1 can only win by forcing player 0 into a deadlock in which
player 0 has to move. Hence the algorithm that computes the winning region of
player 1 simply has to compute the player-1-attractor of all such vertices. This
is possible in linear time.

12

11.2 Automata Based Model Checking (s.61)

11.3 Emptiness Test on NBA

11.4 MC(CTL)

11.5 Solve parity game on finite arena in exp-time

11.6 Solve parity game on finite arena in quasi-poly-time
12 Important Proves (that are (non)-trivial)

12.1 Correctness of Bisimulation Game (2.17)

Theorem 12.1 Let S, T be TS, so € VS,tg € VT such that B(so) = B(to).
Then

(S,s0) ~ (T,ty) <= Player 0 wins the corresponding bisimulation game

PrROOF. =>: Let R : (S,s0) ~ (T,to) be a bisim. We are going to define
w.s. f. Let m:= (4, so,t0),---, (A,s,t),(S,s',t) with (s,t) € R. Then there

isat e T with (¢,t) € R, define f(m) := (A,s',t'). Analogous for m :=
(A, s0,t0)s - -, (A, s,t),(S,s,t"). In case (s,t) € R, then f(m) undefined.

As (so,to) € R, each play consistent with f is either infinite (we win by winning
cond.) or finite, for which there exists a (A4, s,t) such that (s,t) ¢ R, by which
N(s) = N(t) = 0, we also win here.

<=: Let f be a w.s. for Player 0. We define

R :={(s,t)| there exists a walk consistent with f from (A, sg,to) to (A,s,t)}

12.2 Simple Games are positional determined (2.23)

PROOF.

12.3 MC(ML) (3.14)

Definition 12.2 Let Sa TS, p € ML. Arena A := (V, V, E) defined as follows
o Vi={(0,5) |9 €clp),s eV}
o Vo :={(¥,s)| = 0Cx or ¥ = x1Vxe or ¢ is literal such that (S, s) = ¢}
o Bo={((9), (9)) | if

- Y= ox,0 € {Dﬁo}ﬁwl = X',S/ € N(g) or
— i =x10x2,0 € {A\,V}L¢ =x1 0or ¢ = x2 and s’ = s}

13

Theorem 12.3 Let S a TS, s € VS, ¢ € ML. Then
(S,s) E ¢ <= Player 0 wins the corresponding "ML" game(A(S, ¢), (¢, s0), V)

PROOF. Let s € VS 9 € cl(p). By induction over ¢.

o 1 is literal. (1, s) has no successor, thus Player 0 wins iff (S,s) |= ¢ (by
definition)

o P =x1V X2 Assume (S,s) = . (¥, s) has 2 successors. Wlog. (S,s) =
X1, by ind.hyp. Player 0 wins from (S, x1), thus also from (S,). Assume
Py wins (A, (¢,s),V¥). Wlog. Py wins from (x1, s) (by assumption), then
(S, s) E x1 (by ind.hyp.), thus (S,s) E ¢

e ¢ = Ox. Assume (S,s) E ¢. Let s € N(s), then (S,s") E x, by
ind.hyp. Py wins from (S,), thus also from (S,%). Assume Py wins
(A, (¢,s),V¥). Wlog. Py wins (x,s’) for all s € N(s) (by assumption),
then (S, s") E x (by ind.hyp.), thus (S, s) = Ox. Note that this is already
similar to ¥ = x1 V x2! O

12.4 ML is bisim. invariant (3.17)

Theorem 12.4 Modal logic is bisim. invariant: For all ¢ € ML and all TS
S, T withse VS, teVT

(8,5) ~ (T, 1) <= ((S,5) 9 = (T,1) = 9)
PROOF. Let (S,s) ~ (T,t),¢ € ML. Proof by induction over ¢.
o ¢ atomic. We have (S,s) E ¢ <= (T,t) |= ¢, when 3(s) = B(t).

o o =1 Ao, Thus (S,s) | ¢1 and (S,s) E . (T,t) E ¢i,i € {1,2}
(by ind.hyp). Thus (7,t) E ¥1 A 9.

e { analogously to 3.14. For (¢ consider —)—). O

12.5 Hennessy & Millner (3.26)
Theorem 12.5 Let S, T be finite 0-TS, s € VS, t € V7. Then
(S,s) =r7L (T, t) <= (S,s) ~ (T,t)
PROOF. <=: Assume (S,s) ~ (T,t). Then (S,s) ~, (T,t) for all n € N, thus

ML with modal-depth can fully describe (S, sq), (T,t).
=: Assume (S, s) =prL (T,t). ToDo O

14

12.6 Modal Logic has finite model property (3.27)

Theorem 12.6 Each satisfiable formular ¢ € ML has a model with < 2¢|
states.

PRrROOF. (Simple one) Let ¢ € ML and let (S, s) = ¢ be its model.
1. Construct tree unravelling (T,w) of (S, s)

2. Cut (T,w) at depth n := md(y), obtain (7’,w). Then (7T,w) ~, (T',w)
(sufficient for ¢, as it cannot look further)

3. Prune (7', w). O

12.7 LTL is bisim. invariant (4.11)
Theorem 12.7 Let (S, so),(T,to) be TS. Then

(S, 50) ~ (T, to) =] L(S, s0) = L(T,to) = (S, 50) =rrL (T} to)

PrOOF. We show (S,s0) £ ¢ <= (T,tg) = . Let a® € P(S,s0),a” €
P(T. to) with 3(aS) = B(aT), thus (S,50) = ¢ <= (Tto) = o for all €
LTL. From this if there is a ¢ € LTL with (S, s9) F~ v, then thereis a € P(S, o)
with (S,a) [£ ¥, since L(S,sq) = L(T,ty) (T,ty) has the same path, thus
(T, to) = ¥, hence (T, tg) W 1. O

12.8 biichi-rec. languages are closed under complement
(5.41)

Theorem 12.8

L(B)¢ = U KJ“

K,J equivalence classes of =p
KJ“ZL(B)

PrROOF. C: Let o € L£(B)°. Furthermore observe that ~p is an equivalence
(and more importantly a congruence) with finitely many classes on ¥*. By the
[technical lemma] we thus know there exist equivalence classes K, J C ¥* of =5
such that a € KJ¥. Since a ¢ L(B) we have KJ“ ¢ L(B). Thus « is in the
(exhaustive) union over all such choices K, J of equivalence classes.

O: Let a € K, equivalence classes of ~5 K J*. Let K, J be the corresponding
KJ“gL(B)

equivalence classes such that a € KJ“. Assume for the sake of contradiction

that a € L£(B). Then a € £(B) and hence KJ* N L(B) # (. By [small, not

so technical lemmal it must then be the case that KJ* C L£(B). But then the

choices of K, J contradict the condition under the union. O

129 afFE yp<= ac B (5.50)

Theorem 12.9 Let o a signature, ¥ := 2°. For every ¢ € LTL[o] there is a
NBA B with QB < || - 22I¢! such that for all a € ¢

a < ae€L(B)

12.10 NBA emptiness test (5.51)

12.11 LTL is co-NP hard (5.54)
Algorith:
1. Compute G(B)

[\)

. Compute SCCs of G

w

. Compute SCCs having F

W~

. Check if ¢o can reach such SCCs, if yes, then accept, otherwise reject

12.12 Knaster-Tarski (6.2)

12.13 L, is bisim. invariant (6.31)

PROOF. Assume ¢ € L, with (S,s) = ¢ and (T,t) = ¢. Select a € On with
a > max{|V|%,|V|7}. Then there is) € ML> equivalent to ¢. Thus (S, s) |= ¢
and (7T,t) £~ ¢, which contradicts ML is bisim. invariant for fixed classes of
TS. O

12.14 w.s. for all v € W, (7.11)

Theorem 12.10 Let p € {0,1}. There is a pos.ws. [for p such that f is a
ws. for all v € W, in the game.

PrOOF. We know that every v € W), has a pos.ws. f,. We want to merge all
of those into a single ws. f. Problem is that there might be vertices such that
fo(v) # fur(v). We need to eliminate those. Be {f,,,... fiw,|} be the set of all
pos.ws., then there is a well ordering of those. We always take the smallest f,,
in this set and add it to f. Done. O

12.15 parity games are pos. determined (7.12)
Theorem 12.11 V = W, U W,

16

PROOF.

12.16 MC(L,) (7.34,7.35,7.38)

17

