
Machine Learning II Exam from 05.08.2020

This is not official; it is not endorsed by the university or the lecturer etc.

120 minutes, no auxiliary tools allowed, 20 + 10 + 25 + 20 + 25 = 100 points

1. Multiple choice (4× 5 = 20 Points)

Answer the following multiple choice questions. There is only one good answer per question.

To mark an answer put an × in the � next to it. For each question, no or false answer is zero

points, correct answer is full points.

(a) Locally linear embedding (LLE)

• embeds the data into a high-dimensional space for subsequent classification.

• learns a parametric mapping from the inputs to the outputs.

• preserves local structure of the data.

• is nonconvex and is subject to local minima.

(b) Which of the following is True: Canonical Correlation Analysis (CCA)

• finds the projection of one multivariate random variable that is maximally correlated.

• finds the projection of two multivariate random variables that are maximally corre-

lated.

• finds which dimensions of a multivariate random variable that are maximally corre-

lated.

• finds which dimension of two multivariate random variables are maximally correlated.

(c) Which of the following is True: Assuming a kernel k(x, x�), the weakest condition on this

kernel for the support vector data description (SVDD) and the one-class SVM to produce

the same decision boundary is

• k(xi, xi) = 0 for all i.

• k(xi, xj) = 0 for all i, j.

• k(xi, xi) = const for all i. (lecture 6, slide 23)

• k(xi, xj) = const for all i, j.

(d) A limitation of the weighted degree kernel k(x, x�) :=
�L

�=1 β�

�
k 1(uk,�(x) = uk,�(x

�)) is

• it is not positive definite.

• it is computationally intractable.
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• it is not robust to sequence misalignment.

• it does not take into account correlation between adjacent terms of the sequence.

2. Application of Machine Learning (5 + 5 = 10 Points)

Consider the task of reconstructing missing entries in some historical time series. Elements of

the time series are valued between 0 and 10, with ”?” at time steps where the symbol could not

be recovered. An example of a possible sequence is

0 ? 5 5 3 8 8 ? 10 9 5 9 ? ? ? 3 4 . . .

We would like to use machine learning to learn a model that can resolve the missing entries.

We have collected N = 1000 sequences, each of them comprising between 100 to 500 time steps.

Indicate:

(a) the name of an algorithm or method presented in ML2 that can solve this problem effi-

ciently.

(b) the way the algorithm wold be applied, in particular, how to select and represent you data

for training and prediction, and what objective to minimise.

(a) Structured prediction (kernel or neural networks).

(b)

3. One-Class SVM (5 + 5 + 15 = 25 Points)

The non-spherical version of one-class SVM is given by the optimisation problem

min
w,ξ,ρ

1

2
�w�22 − ρ+ C

N�

i=1

ξ subject to wTxi ≥ ρ− ξi and ξi ≥ 0 ∀i ∈ {1, . . . , N},

where x1, . . . , xN ∈ Rd are the training data. The condition for classifying a data point x as an

outlier is then given by wTx < ρ.

(a) Give a geometric interpretation of the quantity ρ
�w�2

.

By slide 21 from lecture 6, ρ
�w�2

is the smallest distance from the origin to the sepa-

rating hyperplane. By minimising �w� we push the hyperplane as close to the data

points as possible.

(b) Write down the Lagrangian L(w, ρ, ξ; a, b) of the constrained optimisation problem

above, where a and b are vectors of Lagrange multipliers associated to each set of

constraints.

L(w, ρ, ξ; a, b) := 1
2�w�22 − ρ+ C

�N
i=1 ξ +

�N
i=1 ai(ρ− ξi − wTxi)−

�N
i=1 biξi.
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(c) Derive the dual program for the one-class SVM. Show that it has the form

min
a

1

2

N�

i,j=1

aiajx
T
i xj subject to 0 ≤ ai ≤ C ∀i ∈ {1, . . . , N} and

N�

i=i

ai = 1

We have

∂

∂w
L(w, ρ, ξ; a, b) = 0 ⇐⇒ w =

n�

i=1

aixi

∂

∂ρ
L(w, ρ, ξ; a, b) = 0 ⇐⇒ 1 =

n�

i=1

ai

∂

∂ξj
L(w, ρ, ξ; a, b) = C − aj − bj

!
= 0 ∀j ∈ {1, . . . , N}.

The dual problem thus is

max
a,b

min
w,ρ,ξ

L(w, ρ, ξ; a, b)

subject to w =

n�

i=1

aixi, 1 =

n�

i=1

ai, C − ai − bi = 0, ai, bi ≥ 0 ∀i ∈ {1, . . . , N},

which, by plugging in the primal variables, is equal to

max
a,b

1

2
�

n�

i=1

aixi�22 +
N�

i=1

aiρ− ρ

� �� �
=0

+

N�

i=1

(C − ai − bi)ξ

� �� �
=0

−
N�

i=1

ai




n�

j=1

ajxj




T

xi

subject to 1 =

n�

i=1

ai, C − ai − bi = 0, ai, bi ≥ 0 ∀Ni=1,

which reduces to

max
a,b

−1

2

N�

i,j=1

aiajx
T
i xj subject to C − ai ≥ 0, ai ≥ 0 ∀Ni=1,

which is

min
a,b

1

2

N�

i,j=1

aiajx
T
i xj subject to C ≥ ai ≥ 0 ∀Ni=1.

4. Neural Networks and Backpropagation (5 + 5 + 10 = 20

Points)

Let x1 and x2 be two observed variables. Consider the two-layer network that takes these two

variables as input and builds the prediction y by computing iteratively:

z3 := w13x1, z4 := w14x1 + w24x2, a3 := exp(z3), a4 := exp(z4), y = a3 − a4.

(a) Draw the neural network graph associated to these computations.
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We now consider the loss function �(y, t) := 1
2 (y− t)2, where t is a target variable that the

neural network learns to approximate.

(b) Using the rules for backpropagation, compute the derivatives ∂�
∂w13

, ∂�
∂w14

and ∂�
∂w14

required

for gradient descent.

∂�

∂w13
=

∂�

∂y

∂y

∂a3

∂a3
∂z3

∂z3
∂w13

= (y − t) · 1 · a3 · x1 = (y − t)a3 · x1

and similarly ∂�
∂w14

= (t− y)a4 · x1 and ∂�
∂w24

= (t− y)a4 · x2.

(c) We now consider the activations a3 and a4 and produce them from the mixture coefficients

p3 :=
a3

a3 + a4
and p4 :=

a4
a3 + a4

.

We define the new loss function

�(p3, p4, t) := − log(p3f3(t) + p4f4(t)),

where f3 and f4 are some positive valued functions. Compute the derivative of the new

loss function with respect to the variables z3 and z4. In your derivation, you can make

use of the posterior probabilities

π3 :=
p3f3(t)

p3f3(t) + p4f4(t)
and π4 :=

p4f4(t)

p3f3(t) + p4f4(t)
.

∂�

∂z3
=

∂�

∂p3

∂p3
∂a3

∂a3
∂z3

+
∂�

∂p4

∂p4
∂a3

∂a3
∂z3

= −π3

p3

a4
(a3 + a4)2

a3 −
π4

p4

−a4
(a3 + a4)2

a3

=
π4

p4
p4p3 −

π3

p3
p4p3 = π4p3 − π3p4.

and similarly ∂�
∂z3

= π3p4 − π4p3.

5. Structured Kernels (7 + 18 = 25 Points)

Let two documents s and t be represented by the set of English words that compose them. For

example:

s = set([’man’, ’his’, ’resting’, ’the’, ’car’, ’been’, ’has’, ’in’]),

t = set([’longer’, ’is’, ’table’, ’the’, ’book’, ’on’, ’no’]),
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Let W be a very large wet of all possible English words. The kernel for two documents s and t

is defined as:

k(s, t) =
�

w∈W

1{w∈s and w∈t} .

(a) Implement a function that computes the kernel for any pair of documents s and t. The

implementation should be efficient (i.e. not iterate over all words in W ).

def kernel(s,t):

k = len(s.intersection(t))

return k

(b) We would like to implement a rudimentary machine learning model that is based on this

kernel. Our model learns the mean of the training data in feature space and predicts the

squared distance of new data points to the mean. Considering a data set x1, . . . , xN , with

mean in feature space m = 1
N

�N
i=1 ϕ(xi), the squared distance of new data points x to

the mean is given by

�����ϕ(x)−
1

N

N�

i=1

ϕ(xi)

�����

2

2

= k(x, x)− 2

N

N�

i=1

k(x, xi) +
1

N2

N�

i,j=1

k(xi, xj)

� �� �
=:a

.

Implement the functions fit and predict below that receive some training and test data

respectively (given as a list of documents).

class Dist2mean:

def fit(self, Xtrain):

self.N = len(Xtrain)

kernelsum = 0

for i in Xtrain:

for j in Xtrain:

kernelsum += kernel(i, j)

self.a = (1.0 / (self.N * self.N)) * kernelsum

self.training = Xtrain

def predict(self, Xtest):

Dtest = []

for d in Xtest:

auto = kernel(d, d)

second = 0

for i in self.training:

second += kernel(d, i)

Dtest.append(auto - (2.0 / self.N) * second + self.a)

return Dtest

The grey code was given.

Thanks to everyone contributing to this account of the exam and its solutions :)
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