Aufgabe 1:

Berechne die Determinanten von

a)
$$A = \begin{pmatrix} 5 & 3 \\ -1 & -2 \end{pmatrix}$$

a)
$$A = \begin{pmatrix} 5 & 3 \\ -1 & -2 \end{pmatrix}$$
 b) $B = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & -2 & 2 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$

Aufgabe 2:

2,5 Punkte

3 Punkte

Seien
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$ Vektoren im \mathbb{R}^3 .

- a) Untersuche, ob v_1, v_2, v_3 linear unabhängig sind.
- b) Bilden v_1, v_2, v_3 eine Basis des \mathbb{R}^3 ? Warum?

Aufgabe 3:

7 Punkte

Für
$$\alpha \in \mathbb{R}$$
, sei $A_{\alpha} = \begin{pmatrix} \alpha & \alpha+1 & 1\\ 1 & 0 & 1\\ 1 & (\alpha+1)^2 & -2 \end{pmatrix}$ und $b = \begin{pmatrix} 2\\ 0\\ -3 \end{pmatrix}$.

- Bestimme für jedes $\alpha \in \mathbb{R}$ die Anzahl der Lösungen des Gleichungssystems $A_{\alpha}x = b$. (mit Begründung)
- b) Sei $\alpha = -1$. Bestimme die Dimension des Kerns von A_{-1} .
- Sei $\alpha=-1$. Bestimme die Lösungsmenge von $A_{-1}x=b$.

Aufgabe 4:

1,5 Punkte

Seien A und B quadratische Matrizen, wobei A singulär ist.

Zeige: AB ist singulär.

Aufgabe 5:

2 Punkte

Sei
$$A = \begin{pmatrix} 1 & 2 \\ 4 & -1 \end{pmatrix}$$
 und $B = \begin{pmatrix} 2 & 3 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$. Berechne, falls möglich, AB^T , BA und A^{-1} .

Aufgabe 6:

1,5 Punkte

Sei
$$U := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R} \text{ mit } y = 2x + 1 \right\}$$
.

- a) Uptersuche, ob U ein Untervektorraum von \mathbb{R}^2 ist.
- b) Gib eine Parameterdarstellung von U an.

Aufgabe 7:

2,5 Punkte

Die (n, n)-Matrix A habe die Eigenwerte $\lambda_1, \ldots, \lambda_n$, und es gelte $A^2 = E$.

- a) Zeige: Für die Matrix $D:=\left(\begin{array}{cccccc} 0 & \lambda_2 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \lambda_{n-1} & 0 \\ 0 & \cdots & \cdots & 0 & \lambda_n \end{array}\right)_{(n,n)}$ gilt $D^2=E$.
- b) Zeige mit Hilfe des Ergebnisses von a), daß $\lambda_i \in \{-1,1\}$ für alle $i=1,\ldots,n$.