Exam 1 WS2024/2025

1. Multiple Choice (6 x 4 =20 P)

Answer the following multiple choice questions. There is only one good answer per
question. To make an answer, put an x in the box next to it. For each question, no or
false answer is zero pointe, correct answer is full points.

(a) Which of the following is True about the Bayes-optimal classifier?
Its performance represents the theoretical upper bound of accuracy given the true data

distributions.
Its performance is typically inferior to that of other classifiers in practice.

It disregards misclassification errors entirely.
It relies on approximations rather than true posterior probabilities.

(b) Which of the following is True for Principal Component Analysis (PA)?

It selects a subset of original features that contribute most to classification.

It projects the data onto a new set of uncorrelated variables ordered by variance.
It clusters the data points based on their similarity

It is primarily used for increasing the number of features in a dataset.

(c) Which of the following is a popular activation function used in neural networks to
introduce non-linearity into the forward process?
max(0, x)
max(—z, z)
sin(zx)
2
exp(—3cz)

(d) Which of the following is True for slack variables in Support Vector Machines
(SVM)?
They help separate non-linearly separable data by mapping it to a higher-dimensional

space.
They allow some misclassification to improve the model's flexibility in handling non-

linearly separable data.
They make the margin smaller to ensure a tighter fit to the training data.Slacking in

class improves the learning performance.

Which of the following is True about activation maximization as an explainability

method?
Activation maximization finds input patterns that maximize the activation of a specific

neuron or output.
Activation maximization finds network weights that maximize the activation of a specific

neuron for a given input.
Activation maximization is used to compute per-feature importance scores for a

prediction.



Activation maximization makes models more interpretable by reducing model
complexity.

2. Maximum Likelihood and Bnyes (6 + 6 + b + 5 = 20 P)

The Bernoulli distribution is given by
P(z|0)=6 (1 —-0)'"

where = € {0,1} and 0 < # < 1 is o parameter. Let D = {z1,...,on} be o dataset of independent
draws from that distribution. We would like to learn the paranmoter 0 from data.

(a) Write the likelthood function P(D | 6) as a function of @ and the observations 21, ... ;TN

(b) Compute the maximum likelihood solution for ©” given the dataset D ={1,0,1, 1} and
the prrobability P(xs =1,x6=1 | ©N7).

he Bayesian viewpoint and assume that the parameter ¢ has prior provubinty

p 1B ) =26 =
B(9), 0 otherwise

Now, we adopt t

(™) Compute the posterior distribution p(6 | D) after observing D as in (b).

(d) Evaluate under this posterior distribution the probability that x5 and zg are one, 1.€. evaluate

[ P(zs =156 =116)p(0 | D)d. _
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3. Linear Models For Classification (3 + 3 + 2 + A IS ERNERS \
vation &y for n € {1,..-, N} is known to
— 1 (yellow) and class Co with t, = 0
lassification algorithms that fmtn? their
— 1 otherwise. (For simplicity, we

Consider a binary classification problem in which each ob_ser
belong to one of two classes, corresponding to CID-SS Gy valth tn
(blue), as shown in Figures (a) and (b). We consider bmnry‘_c )
prediction as y = sign(w’ ) with sign(a) = 0 for a < 0 and sign(e
ignore the offset).

(8 half-moon plots)

(a) Draw in Figure (a) the weight vector w (as an arrow) and the corresponding decision
boundary (as a line) of a classifier trained according to the mean separation criterion.
The orange and blue crosses show the empirical mean of the classes. Hint: The mean
separation criterion aims to maximize the

distances between the class means when projected onto w

(b) Draw in Figure (b) the weight vector w (as an arrow) and the corresponding decision
boundary (as a line) of Fisher's Linear Discriminant (LDA). The solution of Fisher's
Linear Discriminant is given

by w = S-'w (m1 — m0) where
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The within-class variance is the sum of the unnormalized variance of the projected data
of each class.
The contour plots visualize the covariance structure of the classes

(c) Explain the objective that Fisher's Linear Discriminant tries to optimize.

(d) State a classification algorithm, discussed in the lecture, that will be able to classify
the above data without any misclassification.
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(f) Show that the maximum (log) like

log p

is given by
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Hint: You may use %%2 =N(z, | 11,251) < E7 (@0

— ).

g) State the within-class variance Sw under the above probabilistic model in terms of p(t, = 1 | xy)
(analogously p(t, = 0 | @,)) from task (e), and m; (analogously myg) from task (f).

(h) Draw in Figure (h) the weight vector w (as an arrow) and the corresponding decision boundary
(as a line) of Fisher’s Linear Discriminant for probabilistic labels that you just derived. The color of

the data points visualizes p(t, = 1 | T2).



(a) State the Lagrange...
(b) State the KKT conditions

import numpy
def evaluate(w,X,t,A):

N,d = X.shape()

returnJ




with a constant learning rate of 0.01
import numpy
def gradient_descent(X,t,A):

N,d = X.shape()

w = numpy.random.rand()

return w



