Machine Learning II Exam from 05.08.2020

This is not official; it is not endorsed by the university or the lecturer etc.

120 minutes, no auxiliary tools allowed, $20+10+25+20+25=100$ points

1. Multiple choice ($4 \times 5=20$ Points)

Answer the following multiple choice questions. There is only one good answer per question. To mark an answer put an \times in the \square next to it. For each question, no or false answer is zero points, correct answer is full points.
(a) Locally linear embedding (LLE)

- embeds the data into a high-dimensional space for subsequent classification.
- learns a parametric mapping from the inputs to the outputs.
- preserves local structure of the data.
- is nonconvex and is subject to local minima.
(b) Which of the following is True: Canonical Correlation Analysis (CCA)
- finds the projection of one multivariate random variable that is maximally correlated.
- finds the projection of two multivariate random variables that are maximally correlated.
- finds which dimensions of a multivariate random variable that are maximally correlated.
- finds which dimension of two multivariate random variables are maximally correlated.
(c) Which of the following is True: Assuming a kernel $k\left(x, x^{\prime}\right)$, the weakest condition on this kernel for the support vector data description (SVDD) and the one-class SVM to produce the same decision boundary is
- $k\left(x_{i}, x_{i}\right)=0$ for all i.
- $k\left(x_{i}, x_{j}\right)=0$ for all i, j.
- $k\left(x_{i}, x_{i}\right)=$ const for all i. (lecture 6 , slide 23)
- $k\left(x_{i}, x_{j}\right)=$ const for all i, j.
(d) A limitation of the weighted degree kernel $k\left(x, x^{\prime}\right):=\sum_{\ell=1}^{L} \beta_{\ell} \sum_{k} \mathbb{1}\left(u_{k, \ell}(x)=u_{k, \ell}\left(x^{\prime}\right)\right)$ is
- it is not positive definite.
- it is computationally intractable.
- it is not robust to sequence misalignment.
- it does not take into account correlation between adjacent terms of the sequence.

2. Application of Machine Learning ($5+5=10$ Points)

Consider the task of reconstructing missing entries in some historical time series. Elements of the time series are valued between 0 and 10 , with "?" at time steps where the symbol could not be recovered. An example of a possible sequence is

We would like to use machine learning to learn a model that can resolve the missing entries. We have collected $N=1000$ sequences, each of them comprising between 100 to 500 time steps. Indicate:
(a) the name of an algorithm or method presented in ML2 that can solve this problem efficiently.
(b) the way the algorithm wold be applied, in particular, how to select and represent you data for training and prediction, and what objective to minimise.
(a) Structured prediction (kernel or neural networks).
(b)

3. One-Class SVM $(5+5+15=25$ Points)

The non-spherical version of one-class SVM is given by the optimisation problem

$$
\min _{w, \xi, \rho} \frac{1}{2}\|w\|_{2}^{2}-\rho+C \sum_{i=1}^{N} \xi \quad \text { subject to } \quad w^{\top} x_{i} \geq \rho-\xi_{i} \quad \text { and } \quad \xi_{i} \geq 0 \quad \forall i \in\{1, \ldots, N\}
$$

where $x_{1}, \ldots, x_{N} \in \mathbb{R}^{d}$ are the training data. The condition for classifying a data point x as an outlier is then given by $w^{\top} x<\rho$.
(a) Give a geometric interpretation of the quantity $\frac{\rho}{\|w\|_{2}}$.

By slide 21 from lecture $6, \frac{\rho}{\|w\|_{2}}$ is the smallest distance from the origin to the separating hyperplane. By minimising $\|w\|$ we push the hyperplane as close to the data points as possible.
(b) Write down the Lagrangian $L(w, \rho, \xi ; a, b)$ of the constrained optimisation problem above, where a and b are vectors of LAGRANGE multipliers associated to each set of constraints.

$$
L(w, \rho, \xi ; a, b):=\frac{1}{2}\|w\|_{2}^{2}-\rho+C \sum_{i=1}^{N} \xi+\sum_{i=1}^{N} a_{i}\left(\rho-\xi_{i}-w^{\top} x_{i}\right)-\sum_{i=1}^{N} b_{i} \xi_{i} .
$$

(c) Derive the dual program for the one-class SVM. Show that it has the form $\min _{a} \frac{1}{2} \sum_{i, j=1}^{N} a_{i} a_{j} x_{i}^{\top} x_{j} \quad$ subject to $\quad 0 \leq a_{i} \leq C \quad \forall i \in\{1, \ldots, N\} \quad$ and $\quad \sum_{i=i}^{N} a_{i}=1$

We have

$$
\begin{gathered}
\frac{\partial}{\partial w} L(w, \rho, \xi ; a, b)=0 \Longleftrightarrow w=\sum_{i=1}^{n} a_{i} x_{i} \\
\frac{\partial}{\partial \rho} L(w, \rho, \xi ; a, b)=0 \Longleftrightarrow 1=\sum_{i=1}^{n} a_{i} \\
\frac{\partial}{\partial \xi_{j}} L(w, \rho, \xi ; a, b)=C-a_{j}-b_{j} \stackrel{!}{=} 0 \quad \forall j \in\{1, \ldots, N\} .
\end{gathered}
$$

The dual problem thus is

$$
\begin{gathered}
\max _{a, b} \min _{w, \rho, \xi} L(w, \rho, \xi ; a, b) \\
\text { subject to } w=\sum_{i=1}^{n} a_{i} x_{i}, 1=\sum_{i=1}^{n} a_{i}, C-a_{i}-b_{i}=0, a_{i}, b_{i} \geq 0 \quad \forall i \in\{1, \ldots, N\},
\end{gathered}
$$

which, by plugging in the primal variables, is equal to

$$
\begin{gathered}
\max _{a, b} \frac{1}{2}\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|_{2}^{2}+\underbrace{\sum_{i=1}^{N} a_{i} \rho-\rho}_{=0}+\underbrace{\sum_{i=1}^{N}\left(C-a_{i}-b_{i}\right) \xi}_{=0}-\sum_{i=1}^{N} a_{i}\left(\sum_{j=1}^{n} a_{j} x_{j}\right)^{\top} x_{i} \\
\text { subject to } \quad 1=\sum_{i=1}^{n} a_{i}, C-a_{i}-b_{i}=0, a_{i}, b_{i} \geq 0 \quad \forall_{i=1}^{N}
\end{gathered}
$$

which reduces to

$$
\max _{a, b}-\frac{1}{2} \sum_{i, j=1}^{N} a_{i} a_{j} x_{i}^{\top} x_{j} \quad \text { subject to } \quad C-a_{i} \geq 0, a_{i} \geq 0 \quad \forall_{i=1}^{N}
$$

which is

$$
\min _{a, b} \frac{1}{2} \sum_{i, j=1}^{N} a_{i} a_{j} x_{i}^{\top} x_{j} \quad \text { subject to } \quad C \geq a_{i} \geq 0 \forall_{i=1}^{N}
$$

4. Neural Networks and Backpropagation $(5+5+10=20$ Points)

Let x_{1} and x_{2} be two observed variables. Consider the two-layer network that takes these two variables as input and builds the prediction y by computing iteratively:

$$
z_{3}:=w_{13} x_{1}, \quad z_{4}:=w_{14} x_{1}+w_{24} x_{2}, \quad a_{3}:=\exp \left(z_{3}\right), \quad a_{4}:=\exp \left(z_{4}\right), \quad y=a_{3}-a_{4}
$$

(a) Draw the neural network graph associated to these computations.

We now consider the loss function $\ell(y, t):=\frac{1}{2}(y-t)^{2}$, where t is a target variable that the neural network learns to approximate.
(b) Using the rules for backpropagation, compute the derivatives $\frac{\partial \ell}{\partial w_{13}}, \frac{\partial \ell}{\partial w_{14}}$ and $\frac{\partial \ell}{\partial w_{14}}$ required for gradient descent.

$$
\frac{\partial \ell}{\partial w_{13}}=\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial a_{3}} \frac{\partial a_{3}}{\partial z_{3}} \frac{\partial z_{3}}{\partial w_{13}}=(y-t) \cdot 1 \cdot a_{3} \cdot x_{1}=(y-t) a_{3} \cdot x_{1}
$$

and similarly $\frac{\partial \ell}{\partial w_{14}}=(t-y) a_{4} \cdot x_{1}$ and $\frac{\partial \ell}{\partial w_{24}}=(t-y) a_{4} \cdot x_{2}$.
(c) We now consider the activations a_{3} and a_{4} and produce them from the mixture coefficients

$$
p_{3}:=\frac{a_{3}}{a_{3}+a_{4}} \quad \text { and } \quad p_{4}:=\frac{a_{4}}{a_{3}+a_{4}} .
$$

We define the new loss function

$$
\ell\left(p_{3}, p_{4}, t\right):=-\log \left(p_{3} f_{3}(t)+p_{4} f_{4}(t)\right)
$$

where f_{3} and f_{4} are some positive valued functions. Compute the derivative of the new loss function with respect to the variables z_{3} and z_{4}. In your derivation, you can make use of the posterior probabilities

$$
\pi_{3}:=\frac{p_{3} f_{3}(t)}{p_{3} f_{3}(t)+p_{4} f_{4}(t)} \quad \text { and } \quad \pi_{4}:=\frac{p_{4} f_{4}(t)}{p_{3} f_{3}(t)+p_{4} f_{4}(t)}
$$

$$
\begin{aligned}
\frac{\partial \ell}{\partial z_{3}} & =\frac{\partial \ell}{\partial p_{3}} \frac{\partial p_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial z_{3}}+\frac{\partial \ell}{\partial p_{4}} \frac{\partial p_{4}}{\partial a_{3}} \frac{\partial a_{3}}{\partial z_{3}}=-\frac{\pi_{3}}{p_{3}} \frac{a_{4}}{\left(a_{3}+a_{4}\right)^{2}} a_{3}-\frac{\pi_{4}}{p_{4}} \frac{-a_{4}}{\left(a_{3}+a_{4}\right)^{2}} a_{3} \\
& =\frac{\pi_{4}}{p_{4}} p_{4} p_{3}-\frac{\pi_{3}}{p_{3}} p_{4} p_{3}=\pi_{4} p_{3}-\pi_{3} p_{4}
\end{aligned}
$$

and similarly $\frac{\partial \ell}{\partial z_{3}}=\pi_{3} p_{4}-\pi_{4} p_{3}$.

5. Structured Kernels ($7+18=25$ Points)

Let two documents s and t be represented by the set of English words that compose them. For example:

```
s= set(['man', 'his', 'resting', 'the', 'car', 'been', 'has', 'in']),
    t= set(['longer', 'is', 'table', 'the', 'book', 'on', 'no']),
```

Let W be a very large wet of all possible English words. The kernel for two documents s and t is defined as:

$$
k(s, t)=\sum_{w \in W} \mathbb{1}_{\{w \in s \text { and } w \in t\}} .
$$

(a) Implement a function that computes the kernel for any pair of documents s and t. The implementation should be efficient (i.e. not iterate over all words in W).

```
def kernel(s,t):
    k = len(s.intersection(t))
    return k
```

(b) We would like to implement a rudimentary machine learning model that is based on this kernel. Our model learns the mean of the training data in feature space and predicts the squared distance of new data points to the mean. Considering a data set x_{1}, \ldots, x_{N}, with mean in feature space $m=\frac{1}{N} \sum_{i=1}^{N} \varphi\left(x_{i}\right)$, the squared distance of new data points x to the mean is given by

$$
\left\|\varphi(x)-\frac{1}{N} \sum_{i=1}^{N} \varphi\left(x_{i}\right)\right\|_{2}^{2}=k(x, x)-\frac{2}{N} \sum_{i=1}^{N} k\left(x, x_{i}\right)+\underbrace{\frac{1}{N^{2}} \sum_{i, j=1}^{N} k\left(x_{i}, x_{j}\right)}_{=: a}
$$

Implement the functions fit and predict below that receive some training and test data respectively (given as a list of documents).

```
class Dist2mean:
    def fit(self, Xtrain):
        self.N = len(Xtrain)
        kernelsum = 0
        for i in Xtrain:
            for j in Xtrain:
                kernelsum += kernel(i, j)
        self.a = (1.0 / (self.N * self.N)) * kernelsum
        self.training = Xtrain
    def predict(self, Xtest):
        Dtest = []
        for d in Xtest:
            auto = kernel(d, d)
            second = 0
            for i in self.training:
                second += kernel(d, i)
            Dtest.append(auto - (2.0 / self.N) * second + self.a)
        return Dtest
```

The grey code was given.

Thanks to everyone contributing to this account of the exam and its solutions :)

