Technische Universität Berlin

Fakultät II – Institut für Mathematik Dr. Sebastian Riedel

erreichte Punktzahl

Unterschrift

Sommersemester 2014 6. Oktober 2014

Klausur Mathematik II für Wirtschaftswissenschaftler

Name:					• • • • • • • • • • • • • • • • • • • •		
MatrNr.:		• • • • • • • • • • • • • • • • • • • •	Studi	engang:			• • • • • • • • • • • • • • • • • • • •
Zur Klausur sind S rechner, Handys, S		_				t zugelasse	n. Taschen-
Geben Sie immer o	den vollständi g	gen Reche	e nweg bzw	. eine Beg	gründung	an.	
Mit Bleistift oder	Rotstift gesch	riebene Kl	lausuren kö	nnen nich	t gewertet v	werden.	
Geben Sie alle bese	chriebenen Blät	ter, auch S	Schmierzett	el und Ihr	Formelblatt	, ab.	
Nicht angemelde	ete Klausuren	gelten al	s nicht ge	schrieben	und werd	len nicht	korrigiert!
Die Bearbeitungsze	eit beträgt <mark>90</mark> I	Minuten.					
	Die Klaus	ur ist mit 5	50 von 100	Punkten b	estanden.		
Korrektur							
Aufgabe	1	2	3	4	5	6	\sum
Punkte	10	18	16	18	20	18	100

Klausur Notenschlüssel

"100er Mathe Economics ab 2014"					
1.0	95-100	Sehr gut			
1.3	90-94	Sem gut			
1.7	85-89				
2.0	80-84	Gut			
2.3	75-79				
2.7	70-74				
3.0	65-69	Befriedigend			
3.3	60-64				
3.7	55-59	Ausreichend			
4.0	50-54	Austeichend			
5.0	00-49	Mangelhaft			

1. Aufgabe 10 Punkte

(i) Finden Sie eine explizite Stammfunktion zu folgenden Funktionen:

$$f_1(x) = \frac{x^2 + 9}{3}, \quad f_2(x) = e^{2x} - \cos(2x)$$

Lösung:

$$F_1(x) = \frac{x^3}{9} + 3x$$
, $F_2(x) = \frac{e^{2x} - \sin(2x)}{2}$

(ii) Finden Sie eine explizite Stammfunktion zu der folgenden Funktion:

$$q(x) = x\sqrt{x^2 + 1}$$

Lösung: Nach dem Hauptsatz der Differential- und Integralrechnung ist $G(x) = \int_0^x y \sqrt{y^2 + 1} \, dy$ eine Stammfunktion. Für die Berechnung des Integrals benutzen wir die Substitution $y^2 + 1 \mapsto u$ und erhalten

$$\int_0^x y\sqrt{y^2+1}\,dy = \frac{1}{2}\int_1^{x^2+1} \sqrt{u}\,du = \frac{(x^2+1)^{\frac{3}{2}}}{3} - \frac{1}{3}.$$

(iii) Finden Sie eine Funktion $h: \mathbb{R} \to \mathbb{R}$, so dass

$$\int_0^x h(y) \, dy = xe^x$$

gilt für alle $x \in [0, \infty)$.

Lösung: Setze $H(y) = ye^y$ und $h(y) := H'(y) = e^y + ye^y$. Nach dem Hauptsatz der Differential- und Integralrechnung gilt dann

$$\int_0^x h(y) \, dy = H(x) - H(0) = xe^x.$$

2. Aufgabe 18 Punkte

(i) Berechnen Sie das folgende Integral:

$$\int_{1}^{2} \frac{1}{(x-1)^2} \, dx$$

Lösung:

Mit der Substitution $x \mapsto u+1$ erhalten wir $\int_1^2 \frac{1}{(x-1)^2} dx = \int_0^1 \frac{1}{u^2} du$. Man beachte, dass bei 0 eine Polstelle ist. Wir berechnen dann

$$\int_{\varepsilon}^{1} \frac{1}{u^{2}} du = -\frac{1}{u} \Big|_{\varepsilon}^{1} = -1 + \frac{1}{\varepsilon} \to \infty$$

für $\varepsilon \to 0$, also $\int_1^2 \frac{1}{(x-1)^2} dx = \infty$.

(ii) Berechnen Sie das folgende Integral:

$$\int_0^\infty \cos(x)e^{-x}\,dx$$

Lösung:

Sei R > 0. Zweimal partiell integrieren gibt

$$\int_0^R \cos(x)e^{-x} dx = \sin(x)e^{-x}\Big|_0^R - \cos(x)e^{-x}\Big|_0^R - \int_0^R \cos(x)e^{-x} dx$$

und somit

$$2\int_0^R \cos(x)e^{-x} dx = \sin(R)e^{-R} - \cos(R)e^{-R} + 1$$

woraus folgt

$$\int_0^\infty \cos(x)e^{-x} dx = \lim_{R \to \infty} \frac{\sin(R)e^{-R} - \cos(R)e^{-R}}{2} + \frac{1}{2} = \frac{1}{2}.$$

(iii) Berechnen Sie das folgende Integral:

$$\int_2^\infty \frac{1}{x \ln(x)} \, dx$$

Lösung: Wir bemerken dass $(\ln(\ln(x)))' = \frac{1}{x \ln(x)}$ gilt, also

$$\int_{2}^{R} \frac{1}{x \ln(x)} dx = \ln(\ln(x)) \Big|_{2}^{R} = \ln(\ln(R)) - \ln(\ln(2)) \to \infty$$

für $R \to \infty$, also $\int_2^\infty \frac{1}{x \ln(x)} dx = \infty$.

3. Aufgabe 16 Punkte

(i) Bestimmen Sie jeweils die erste Ableitung zu folgenden Funktionen:

$$f(x) = \frac{1}{x^2 + 1}, \quad g(x) = \ln(x + 1).$$

Lösung:

$$f'(x) = -\frac{2x}{(x^2+1)^2}, \quad g'(x) = \frac{1}{x+1}$$

(ii) Finden Sie zwei gewöhnliche Differentialgleichungen erster Ordnung mit Anfangsbedingungen, so dass deren Lösung gerade die Funktionen f und g aus Teil (i) sind.

Lösung: Es ist

$$f'(x) = -\frac{2x}{(x^2+1)^2} = -2x(f(x))^2,$$

und f(0) = 1, d.h. f löst die DGL

$$f'(x) = -2x(f(x))^2, \quad f(0) = 1.$$
 (1)

Weiter ist

$$g'(x) = \frac{\ln(x+1)}{(x+1)\ln(x+1)} = \frac{g(x)}{(x+1)\ln(x+1)}$$

und g(0) = 0, d.h. g löst die DGL

$$g'(x) = \frac{g(x)}{(x+1)\ln(x+1)}, \quad g(0) = 0.$$
 (2)

(iii) Geben Sie an, ob es sich bei den Differentialgleichungen um homogene, inhomogene, separable bzw. lineare DGL handelt.

Lösung: (1) ist homogen, separabel, nichtlinear. (2) ist homogen, separabel, linear.

4. Aufgabe 18 Punkte

Gegeben sei die folgende Differentialgleichung:

$$y'(t) = -t^2 y(t),$$
 $y(0) = 1$

- (i) Geben Sie an, ob die Differentialgleichungen homogen, inhomogen, separabel bzw. linear ist. Lösung: Die Gleichung ist homogen, separabel und linear.
- (ii) Lösen Sie die DGL mit einer Methode Ihrer Wahl.

Lösung: Mit der Lösungsformel aus der Vorlesung sehen wir, dass

$$y(t) = e^{-\int_0^t s^2 ds} = e^{-\frac{t^3}{3}}$$

die Gleichung löst.

(iii) Rechnen Sie nach, dass die von Ihnen gefundene Lösung tatsächlich die DGL löst.

Lösung:

Es ist $y(0) = e^0 = 1$ und

$$y'(t) = -t^2 e^{-\frac{t^3}{3}} = -t^2 y(t).$$

5. Aufgabe 20 Punkte

Gegeben sei das folgende lineare Gleichungssystem:

$$x_1 + x_3 = 1$$

$$x_1 + x_2 = -1$$

$$4x_1 + 2x_2 + x_3 = 0$$

(i) Bringen Sie das LGS in die Form $A\vec{x} = \vec{b}$ für eine geeignete Matrix $A \in \mathbb{R}^{3\times 3}$ und einen geeigneten Vektor $\vec{b} \in \mathbb{R}^3$.

Lösung: Es ist

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 4 & 2 & 1 \end{pmatrix}, \qquad \vec{b} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

(ii) Zeigen Sie mit einer Methode Ihrer Wahl, dass die Matrix A vollen Rang hat.

Lösung:

Wir berechnen die Determinate (z.B. mit der Regel von Sarrus) und erhalten

$$\det \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 4 & 2 & 1 \end{pmatrix} = -1.$$

Damit hat A vollen Rang.

(iii) Bestimmen Sie die Lösungsmenge des LGS mit Hilfe des Gaußalgorithmus. Lösung: Die eindeutige Lösung des LGS ist gegeben durch $\vec{x}^t = (1, -2, 0)$.

6. Aufgabe 18 Punkte

Gegeben sei die folgende Matrix:

$$B = \begin{pmatrix} 1 & 0 & 0 & 7 \\ 2 & 0 & 5 & 0 \\ 0 & 3 & 6 & 0 \\ 0 & 4 & 0 & 8 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

(i) Berechnen Sie die Determinante der Matrix B.

 $\textbf{L\"{o}sung:}$ Nach dem Laplace'schen Entwicklungssatz ist

Entwicklung nach 1. Zeile die anderen Summanden sind 0 absichtlich so gewählt

$$\det \begin{pmatrix} 1 & 0 & 0 & 7 \\ 2 & 0 & 5 & 0 \\ 0 & 3 & 6 & 0 \\ 0 & 4 & 0 & 8 \end{pmatrix} = \det \begin{pmatrix} 0 & 5 & 0 \\ 3 & 6 & 0 \\ 4 & 0 & 8 \end{pmatrix} - 7 \det \begin{pmatrix} 2 & 0 & 5 \\ 0 & 3 & 6 \\ 0 & 4 & 0 \end{pmatrix}$$
$$= -120 + 336 = 216.$$

(ii) Welchen Rang hat die Matrix B?

Lösung: Da die Determinate ungleich 0 ist hat die Matrix vollen Rang, d.h. Rang(B) = 4.

(iii) Sei $\vec{b} \in \mathbb{R}^4$ ein beliebiger Vektor. Betrachten Sie das LGS $B\vec{x} = \vec{b}$. Was können Sie über die Lösungsmenge des LGS sagen?

Lösung: Die Lösungsmenge besteht aus genau einem Element.

(iv) Beweisen Sie die folgende Aussage: Hat eine Matrix $A \in \mathbb{R}^{n \times n}$ vollen Rang, so hat auch $A^t \cdot A$ vollen Rang.

(Hinweis: Benutzen Sie den Zusammenhang zwischen Determinante und Rang einer Matrix sowie den Determinantenmultiplikationssatz, d.h. dass $\det(C \cdot D) = \det(C) \cdot \det(D)$ gilt.)

Lösung: Eine Matrix hat vollen Rang genau dann wenn die Determinante ungleich 0 ist. Damit gilt $\det(A) \neq 0$ und $\det(A^t) = \det(A) \neq 0$, somit auch

$$\det(A \cdot A^t) = \det(A) \cdot \det(A^t) \neq 0$$

und so hat auch $A^t \cdot A$ vollen Rang.