Prüfungsfragebogen zu 5 rocken simal Promis for Communications (MspC)

Vorbereitung
a) Regelmäßiger Besuch der Lehrveranstaltung? X Ja \square Nein
b) Auswirkungen von a):

Positiv
\square Keine \square \square Negativ
c) Dauer der Vorbereitung: 1,5 wers Alleine \square In der Gruppe
d) Vorkenntnisse aus anderen Fächern/Praxiserfahrung?
basic signal processing
e) Welche Hilfsmittel wurden benutzt? (Literatur, Internetseiten etc.)
f) Welche Tipps würdest du zur Vorbereitung geben?
kndw the meaning and interconnectionss of the exercises

Prüfung
a) Gabes Absprachen über Form oder Inhalt und wurden sie eingehalten?
only excersizes , ill be as ked \rightarrow true
b) Ratschläge zum Verhalten während der Prüfung:
c) Prüfungsstil: (Atmosphäre, klare oder unklare Fragestellungen, Detailwissen oder Zusammenhänge, gezielte Zwischenfragen, Hilfestellung, gezielte Fragen bei Wissenslücken, ... ?)

- he will give hints if yau are not perfedly
- only basic way of solung needed. sure
$\rightarrow P_{r}(x)$ is alreadly an ansurer. $d_{c_{n}}$ 't gotoo dees Verschiedenes
a) Welche Note hast du bekommen? (natürlich optional) 1.0
b) Empfandest du die Bewertung als angemessen? Ja \square Nein (warum nicht?)
c) Kannst du die Prüfung weiterempfehlen? $\triangle \mathrm{Ja}$ (wem besonders?) \square Nein (warum nicht?)
$\underset{\text { d) Hast du darüber hinaus Tipps und Bemexkungen auf Lager? }}{\rightarrow \text { really cosing. }}$

Inhalt der Prüfung: Bitte gib möglichst viele Fragen an. Wo wurden Herleitungen verlangt, und wo wurde nach Beweisen gefragt? (Wenn der Platz nicht reicht kannst du auch gerne weitere Blätter verwenden. Am besten zusammengeheftet und durchnummeriert.)
\rightarrow exucise 1)
can you find on innor product for every naum (e.8. 1%) ? no.
$>$ ex 18

$$
\rightarrow \text { exag }
$$

$$
\begin{array}{lll}
\rightarrow e x & 22 & \} \text { we this } \\
\rightarrow e x 23 & \} \text { and this } \\
\rightarrow e x 25 & \} \text { an }
\end{array}
$$

\}

Exercises - Summer 2020

(1) Relate metric spaces, Banach spaces, pre-Hilbert spaces, and Hilbert spaces.
(2) In a metric space, define open sets and closed sets. Give examples of closed sets, open sets, sets that are both open and closed, and sets that are neither open nor closed.
(3) Show that the intersection of two subspaces of a vector space X is a subspace of X.
(4) Suppose $S:=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{m}\right\} \subset X$ is a linearly dependent set, where X is a vector space. Show that there exists an element of S that can be expressed as a linear combination of the other elements of S and that $\operatorname{span}(S)$ is a subspace of X.
(5) Given a norm $\|\cdot\|$ defined on a vector space X, show that

$$
d: X \times X \rightarrow \mathbb{R}:(\boldsymbol{x}, \boldsymbol{y}) \mapsto\|\boldsymbol{x}-\boldsymbol{y}\|
$$

is a metric.
(6) Let X be a normed space. Show that $(\forall \boldsymbol{x} \in X)(\forall \boldsymbol{y} \in X)\|\boldsymbol{x}\|-\|\boldsymbol{y}\| \leq\|\boldsymbol{x}-\boldsymbol{y}\|$.
(7) Given an inner product $\langle\cdot, \cdot\rangle$ defined on a vector space X, show that $(\forall \boldsymbol{x} \in X)\|\boldsymbol{x}\|:=$ $\langle\boldsymbol{x}, \boldsymbol{x}\rangle^{\frac{1}{2}}$ is a norm. (You may assume that that the Cauchy-Schwartz inequality has already been proved.) Is the vector space X equipped with such a norm a Hilbert space?
(8) What is a Cauchy sequence in the context of Hilbert spaces? Do Cauchy sequences in a Hilbert space converge?
(9) In a Hilbert space, define the concepts of weak and strong convergence. When are those concepts equivalent?
(10) In a Hilbert space $(\mathcal{H},\langle\cdot, \cdot\rangle)$, show that $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0$ for every $\boldsymbol{x} \in \mathcal{H}$ implies $\boldsymbol{y}=\mathbf{0}$.
(11) Prove the Cauchy-Schwartz inequality.
(12) Let C be a set in a Hilbert space. Show that C^{\perp} is a subspace.
(13) In a Hilbert space, is the intersection of an arbitrary collection of closed sets a closed set? What can we say if the sets under consideration are open?
(14) Define convex sets.
(15) In a Hilbert space, is the intersection of an arbitrary collection of convex sets a convex set?
(16) Suppose that, at time i, a receiver observe the signal:

$$
\boldsymbol{r}[i]=b_{1}[i] \boldsymbol{s}_{1}+\sum_{k=2}^{N} b_{k}[i] \boldsymbol{s}_{k}+\boldsymbol{n}[i]
$$

where k represents an user index, $b_{k}[i]$ is the transmitted symbol of user $k, \boldsymbol{s}_{k} \in \mathbb{R}^{M}$ $(M>N)$ is the signature of user $k\left(\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{N}\right.$ assumed linearly independent), and $\boldsymbol{n}[i]$ is noise. In the model, $b_{k}[i]$ and $\boldsymbol{n}[i]$ are samples of random variables/vectors taking values on $\{-1,+1\}$ and \mathbb{R}^{M}, respectively. The random variables corresponding to the transmitted symbols of all users and noise are mutually independent, and all random variables are zero mean. Discuss possible approaches based on linear filters to detect the transmitted bit $b_{1}[i]$ of the desired user $k=1$ from $\boldsymbol{r}[i]$.
(17) Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space, and denote the norm induced by the inner product by $\|\cdot\|$. Solve the optimization problem:

$$
\begin{array}{cc}
\operatorname{minimize} & \left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\| \\
\text { subject to } & \boldsymbol{x} \in M:=\operatorname{span}\left(\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{N}\right\}\right),
\end{array}
$$

where $\boldsymbol{x} \in \mathcal{H}$ is the optimization variable, and $\left\{\boldsymbol{y}_{i}\right\}_{i=1, \ldots, N} \subset \mathcal{H}$ and $\boldsymbol{x}_{0} \in \mathcal{H}$ are given vectors. Derive the solution when the constraint is replaced by $\boldsymbol{x} \in M^{\perp}$.
(18) Suppose that $(\mathcal{H},\langle\cdot, \cdot\rangle)$ is a reproducing kernel Hilbert space (RKHS) with a given kernel $\kappa: E \times E \rightarrow \mathbb{R}$ and set E. Solve the following minimization problem (assume that a solution exists):

$$
\begin{array}{cc}
\operatorname{minimize} & \|f\| \\
\text { subject to } & f\left(x_{1}\right)=y_{1} \\
\vdots \\
& f\left(x_{N}\right)=y_{N}
\end{array}
$$

where $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1, \ldots, N} \subset E \times \mathbb{R},\|\cdot\|$ is the norm of induced by the inner product $\langle\cdot, \cdot\rangle$, and $f \in \mathcal{H}$ is the optimization variable. Is the solution unique if the Gram matrix is not positive definite?
(19) Devise an iterative projection-based method to solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$, where $\boldsymbol{A} \in \mathbb{R}^{M \times M}$ and $\boldsymbol{y} \in \mathbb{R}^{M}$ are given. Assume that, at any given time, you are only able to keep one row of \boldsymbol{A} in the memory of your computer. What can you say about your algorithm when \boldsymbol{A} is singular and nonsingular?
(20) Let $C[-\pi, \pi]$ be the space of real continuous functions defined on $[-\pi, \pi]$ satisfying $\int_{t=-\pi}^{\pi}|x(t)|^{2} \mathrm{~d} t<\infty$. Are the sets S_{1}, S_{2} defined below convex sets?

- $S_{1}=\left\{x \in C[-\pi, \pi] \mid \int_{t=-\pi}^{\pi} x(t) y(t) \mathrm{d} t=1\right\}$, where $y \in C[-\pi, \pi]$ is given.
- $S_{2}=\left\{x \in C[-\pi, \pi]\left|\max _{t \in[-\pi, \pi]}\right| x(t) \mid \leq B\right.$, where B is given. (Hint: $\|x\|_{\infty}:=$ $\max _{t \in[-\pi, \pi]}|x(t)|, x \in C[-\pi, \pi]$, is a norm.)
(21) In a Hilbert space, does every nonexpansive mapping have a fixed point? Give counterexamples if the answer is negative.
(NOTE: In the following $I: \mathcal{H} \times \mathcal{H}: x \mapsto x$ denotes the identity mapping in a Hilbert space $(\mathcal{H},\langle\cdot, \cdot\rangle)$, and $\|\cdot\|$ denotes the norm induced by the inner product $\langle\cdot, \cdot\rangle$.)
(22) Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space. Suppose that $T: \mathcal{H} \rightarrow \mathcal{H}$ is a 0.5 -averaged nonexpansive mapping. Prove that the mapping $N=2 T-I$ is nonexpansive, and relate the set of fixed points of T with those of N.
(23) Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space. Prove that the mapping $T: \mathcal{H} \rightarrow \mathcal{H}$ given by $T=$ $I+\lambda(N-I)$ is a $\lambda / 2$-averaged nonexpansive mapping for every $\lambda \in(0,2)$ if $N: \mathcal{H} \rightarrow \mathcal{H}$ is a 0.5 -averaged nonexpansive mapping. Relate the set of fixed points of T with those of N.
(24) Let $T: \mathcal{H} \rightarrow \mathcal{H}$ be a quasi-nonexpansive mapping in a Hilbert space $(\mathcal{H},\langle\cdot, \cdot\rangle)$. It is known that the set of fixed points of T is given by

$$
\operatorname{Fix}(T):=\bigcap_{\boldsymbol{y} \in \mathcal{H}}\left\{\boldsymbol{x} \in \mathcal{H} \left\lvert\,\langle\boldsymbol{y}-T(\boldsymbol{y}), \boldsymbol{x}\rangle \leq \frac{\|\boldsymbol{y}\|^{2}-\|T(\boldsymbol{y})\|^{2}}{2}\right.\right\} .
$$

Show that $\operatorname{Fix}(T)$ is a closed convex set. You may assume that we already know that "half-spaces" are closed convex sets.
(25) Show that the iteration $x_{n+1}=T\left(x_{n}\right)$ with $x_{1} \in \mathcal{H}$ chosen arbitrarily converges weakly to an unspecified point of $\operatorname{Fix}(T)$ (assuming that it is nonempty) if the mapping $T: \mathcal{H} \rightarrow \mathcal{H}$ is averaged nonexpansive. (We may assume that the standard Mann iteration has been proven; we only want to show the corollary discussed in the class.)
(26) If $f: \mathcal{H} \rightarrow \mathbb{R}$ is a Gâteaux differentiable convex function ${ }^{1}$ and f^{\prime} is Lipschitz continuous [i.e., $\left.(\exists \kappa>0)(\forall x \in \mathcal{H})(\forall y \in \mathcal{H})\left\|f^{\prime}(x)-f^{\prime}(y)\right\|<\kappa\|x-y\|\right] .^{2}$ It is known that the mapping $T=I-\mu f^{\prime}$ for $\mu \in(0,2 / \kappa)$ is averaged nonexpansive. Assume that $\arg \min _{x \in C} f(x) \neq \emptyset$, where $C \neq \emptyset$ is a closed convex set. In such a case, we also know that $I-\mu f^{\prime}$ is an averaged nonexpansive mapping and that $\arg \min _{x \in C} f(x)=$ $\operatorname{Fix}\left(P_{C}\left(I-\mu f^{\prime}\right)\right)$ for every $\mu>0$, where $P_{C}: \mathcal{H} \rightarrow C$ is the projection onto C. Show that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ generated by

$$
x_{n+1}=P_{C}\left(x_{n}-\mu f^{\prime}\left(x_{n}\right)\right), \quad x_{1} \in \mathcal{H} \text { arbitrary },
$$

converges weakly to a point $\boldsymbol{x}^{\star} \in \arg \min _{x \in C} f(x)$ if $\mu \in(0,2 / \kappa)$.
(27) Based on the Mann iteration, prove that the POCS algorithm and the parallel projection method converge weakly if the intersection of the sets is nonempty.

[^0]Ex. S520
(1) metro space \rightarrow has metric

Banach Space \rightarrow metric real vector space
complete normed redo space di educes by $11 / 11$ pre-Hilbert Space Banach $+\langle\boldsymbol{r} \rightarrow\rangle$
Hilbert Space pe-bilbert + complete

pre-hilbet incan pole
(2) open set : Vy,E $B(x, \epsilon):=\{y \in E \mid d(x, y)<\epsilon\}<S$
\Rightarrow arbitrary smell distance foramen print in subset S is still in subset
dosed set: $\quad E \mid S:=\{x \in E \mid x \notin S\}$, Super.
\Rightarrow complement of open set
\Rightarrow complete set E and \varnothing is open \& closed.
\Rightarrow neither open ar laced: $(0,1]$
(3) vector space $x \quad S_{1}, S_{2}<x$

$$
S_{1} \cap S_{2} \dot{\subset} x
$$

$$
S_{1} \cap S_{2} \leqslant S_{1} \subset X \quad \square \quad \text { True by howsitivity }
$$

(4) $s:=\left\{\vec{x}_{1} \ldots \vec{x}_{m}\right\} \subset X \quad$ lin. dep.

$$
\begin{aligned}
& \sum_{k=1}^{N} x_{k} x_{k}=0 \underset{\alpha_{k}}{(2)} \cdot x_{n}=\overrightarrow{0} \\
& \operatorname{lin} \text { in dep. }
\end{aligned}
$$

Subspace: $\quad x+y \in \operatorname{Spmen}^{(5)}$ the by lin: cenninastion
$\forall x, y \in \operatorname{spm}(s)$
(5) $\quad x .\|\cdot\| . \quad d: x x x \rightarrow \mathbb{R}:(x, y) \mapsto\|x-y\| \quad$ is metric metrie: $\quad d(x, y) \geq 0 ; d(x, y)=0 \Leftrightarrow x=y ; d(x, y)=d(y, x)$

$$
d(x, z) \leqslant d(x, y)+d(y, z)
$$

nom: $\varepsilon\|x\| \geq 0 \Rightarrow \quad z:=x+y \quad \Rightarrow\|z\| \geq c ;\|x-y\| \geq 0$

$$
\begin{aligned}
& \text { • }\|x\|=0 \Leftrightarrow x=0 \quad z:=x-y \quad\|x-y\|=0 \\
& \Rightarrow \quad x-y=0 \quad \Leftrightarrow \quad x=y \\
& \bullet \quad\|x-y\|=\|y-x\| \quad\| \| x\|=|x|\| x \|, x=-1 \\
& \quad\|-x+y\|=|-1|\|x-y\|=\|x-y\|
\end{aligned}
$$

- $\quad a:=x-y ; b:=y-z$

$$
\begin{aligned}
& \|a+s\| \leq\|a\|+\|b\| \\
& \|x-y+y-z\| \leq\|x-y\|+\|y-z\|
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \|x+y\| \leqslant\|x\|+\| \| \| \quad|\pi r i a n g l e \quad| x+y=: a, b=d y \\
& \|a\| \leqslant\|a-b\|+\|b\| \\
& \|a\|-\|b\| \leqslant\|a-b\| \quad \text { a }
\end{aligned}
$$

7) VS X $(\forall x \in X)\|x\|:=\langle x, x\rangle^{\frac{1}{2}}$ shall be a nom

- $\|x\| \geq 0 \Leftrightarrow\langle x ; x\rangle \geqslant 0$
- $\langle x, x\rangle=0 \Leftrightarrow x=0 \Rightarrow\|x\|=\delta \Leftrightarrow x=0$

$$
\text { - }\langle\alpha,, a x\rangle=\alpha^{2}\langle x, x\rangle=\alpha^{2}\|x\|^{2} \Rightarrow
$$

$$
|\alpha|\|x\|=\sqrt{x^{2}\|x\|^{2}}
$$

- $\|x+y\| \leq\left\|_{x}\right\|+\|y\| \quad f(-)^{2}$
$\|x+y\|^{2} \leq(\pi x\|+\pi y\|)^{2}$
$\langle x+y, x+y\rangle \leqslant\|x\|^{2}+\pi /\left\|^{2}+2\right\| x\| \| y \|$
$\langle x, x\rangle+\langle y, y\rangle+z\langle x, y\rangle \leqslant$
$\|x\|^{2}+\|y\|^{2}+2\langle x, y\rangle \leqslant\|x\|^{2}+\|y\|^{2}+2\|x\|\|y\|$

$$
q\langle x, y\rangle \leq\|x\|\|y\| \quad \text { by Candhy-5chwor }
$$

(8) Candey-Sequence in H

Ailbert space is camplete \Rightarrow ever Courchy-sequence connages
(3) 1 : wak 2 strang convergen a

$$
\begin{aligned}
& { }^{*} \rightarrow n: \lim _{n \rightarrow \infty}\left\langle x_{n}, 4\right\rangle=\left\langle x^{*}, y\right\rangle \\
& " \rightarrow \lim _{n \rightarrow \infty} x_{n}=x^{*}
\end{aligned}
$$

$1 t$ is finite-dimensianal: $" \rightarrow " \Leftrightarrow " \rightarrow "$
(10) $(11, x, \rightarrow) \quad(\forall x \in \mathcal{H}):\langle x, y\rangle=0 \quad \Rightarrow y=\overrightarrow{0}$

$$
\begin{aligned}
z_{\xi}:= & \text { Barsis }\{\mathcal{H}\} \Rightarrow x=\sum_{i} x_{i} z_{i} \quad \forall x \in \mathcal{H}, x_{i} \in \mathbb{R} \\
& \Rightarrow\left\langle\sum_{i} z_{i}, y\right\rangle=0 \\
& \Leftrightarrow\left\langle z_{1}, y\right\rangle+\ldots+\left\langle z_{i}, y\right\rangle=0
\end{aligned}
$$

x is arbilary \Rightarrow every Etement In han bo be 0 ainmmion
\Rightarrow in nowe there is a y which wauld give $\langle y, y\rangle f 0$ $\Rightarrow y=0$
(17) Canchy -Schwarz:

$$
\begin{aligned}
0 \leqslant\|x-\alpha y\|^{2} & =\|x\|^{2}+\alpha^{2}\|y\|^{2}-2 \alpha\langle x, y\rangle \quad \left\lvert\, \alpha=\frac{\langle x, y\rangle}{\|y\|^{2}}\right. \\
& =\|x\|^{2}+\frac{\mid\langle x, y\rangle^{2}}{\|y\|^{2}}-\left\{\frac{\mid\langle x, y\rangle^{2}}{\|y\|^{2}}\right. \\
\mid\langle x, y) \|^{2} & \leq\|x\|^{2} \\
|\langle x, y\rangle| & \leqslant\|x\|\|y\|
\end{aligned}
$$

$c \cap C^{\perp}=\varnothing$
\Rightarrow Bare (c) \cap Base $\left(C^{d}\right)=\varnothing$
\Rightarrow lin. combinations of c^{+}camot form a vector of c

$$
\begin{equation*}
\text { (12) } \mathrm{C} \subset \mathrm{C} \tag{*}
\end{equation*}
$$

(16)

$$
r[i]=b_{k}[i] S_{1}+\sum_{k=2}^{N} b_{k}[i] S_{k}+n[i]
$$

Matched Filto: bsusu $\left\langle[i]_{1}, s_{1}\right\rangle=b_{1}+o+\langle\sin [i]\rangle$
SNR Maximizer: filler $r=h^{\top} s+h^{\top} n$

$$
\begin{aligned}
\operatorname{SHR}(h) & \left.=\frac{\left.i h^{\top} s\right|^{2}}{E\left(G^{\top} \psi\right)^{2}}=\frac{\left|h^{\top} s\right|^{2}}{h^{\top} R h} \quad \right\rvert\,\langle x, y\rangle=x^{\top} R y \\
& =\frac{\mid\left\langle h,\left.R^{-1} s\right|^{2}<s\right.}{\|h\|^{2}} \leqslant \frac{\|h\|^{2}\left\|R^{-1} s\right\|^{2}}{\|h\|^{2}}=\left\|R^{-1} s\right\|^{2}=s^{\top} R^{-1} s \\
\Rightarrow h & \left.\Rightarrow S_{11} S_{k}\right\rangle \approx 0
\end{aligned}
$$

Decorrelation Fither $l_{s} \in \operatorname{argmin} \cdot M h l^{2}$
\Rightarrow noise Amplifieation
$\min -\operatorname{Variance}$ Recienor $\quad h \in \underset{h \in H}{\operatorname{argmin}} E\left(h^{\top} r[i J)^{2}=\underset{h \in H}{\operatorname{argmin}} h^{\top} R h\right.$

$$
\begin{aligned}
& H:=\left\{h \in \mathbb{R}^{W} \mid h^{\top} s=1\right\} \\
& \Rightarrow h \in \underset{h \in H_{H}}{\operatorname{ar} q_{m i n}}\|h\|^{2} \quad, \Rightarrow H:=\left\{h \in \mathbb{R}^{W} \mid\left\langle h_{1} R^{-1} s\right\rangle=1\right\} \\
& \Rightarrow h=P_{H}(0)
\end{aligned}
$$

(17)

$$
\begin{gathered}
(\mathcal{F},<-1>) \quad \|^{\|-1\|} \quad \min _{\text {s.t. }\left\|x-x_{d}\right\|} x \in M:=\operatorname{span}\left(\left\{y_{1}-y_{N}\right\}\right) \\
x^{2}=P_{M}\left(x_{0}\right)
\end{gathered}
$$

for min $\left\|x-x_{c}\right\|$

$$
\begin{array}{lll}
& \text { s.t. } x \in M^{+}
\end{array} \Rightarrow x^{*}=P_{M+}(x)=x-P_{M}(x)
$$

(18) $(1-<; \cdot\rangle)$ is RKits

$$
\begin{aligned}
& \Rightarrow f^{7}=P_{V}(0) \Rightarrow A_{n}(x) \quad, \forall:=\left\{x \in H+\left(x, x_{i}\right\rangle=5,\right\} \quad \text {, } u=\text { span }\{y=-y i n\} \\
& =\sum_{i=1}^{N} a_{i} k\left(\cdot, x_{i}\right) \quad \text {, } \alpha_{i} \text { by Gram Matrix } y_{i}
\end{aligned}
$$

Gram-Mafix pas. definite \Rightarrow itanly if yit lin. independent. \Rightarrow solution net unique
(19) $\quad A x=y \quad$ A singneler \rightarrow no solution /int. \# solutions

$$
x_{k+1}=P_{v_{k+1}}\left(x_{k}\right) \quad, x_{1}=P_{v_{1}}(0)
$$

simultaners projiction methed probably fools
(20) $([-\pi, \pi]$ spice of real. cont. F-chions power signals

$$
\begin{array}{rlrl}
S_{1} & =\left\{x \in C[-\pi, \pi] \mid \int_{\neq \pi}^{\pi} x(t) y(t) d t=1\right\}, & y \in C[-\pi, \pi] \\
& \left.\Rightarrow C_{x}, y\right\rangle:=\int_{t=-\pi}^{\pi} x(t) y(t) d t . & & \\
& \Rightarrow S_{1}=\{x \in C \mid\langle x, y\rangle=1\} &
\end{array}
$$

\rightarrow linear Voriely \Rightarrow convex

$$
S_{2}=\left\{x \in\left[\left.[-\bar{\pi}, \pi]\right|_{\text {max }}+\in[-\pi, \pi]|x(t)| \leq B\right\}\right.
$$

$\Rightarrow N \cdot l_{\infty}$ is a harm

$$
\begin{aligned}
\Rightarrow S 2=\left\{x \in C \mid\|x\|_{0} \leq B\right\} & \rightarrow \text { is a Bad } \| \\
& \rightarrow \text { convex }
\end{aligned}
$$

(21) $\quad H=\mathbb{R}^{\wedge} \quad T: \mathbb{R} \rightarrow \mathbb{R} \quad x \mapsto \frac{1}{x}$

$$
\Rightarrow \quad \| T(x)-T\left(y\left\|^{\|} \leq\right\| x-y \| \quad \Rightarrow T\right. \text { is nenexpensive }
$$

This is orat fou grogetcoims! \rightarrow

This is prot $\xrightarrow{\mathrm{res}}$ ellatereit proections! repros Pror
(22) $(11, c, \rightarrow), T: H \rightarrow H$ a. 5 -amazased nonero. mepping

$$
\begin{aligned}
\Rightarrow & T=T_{N} \cdot \frac{1}{2}+\frac{1}{2} I, \quad T_{N} \text { nomexpansive } \\
& N=2 T-I=T_{N} \quad \Rightarrow \text { alsr nonexpansive, se above } \\
& F_{i x}(T)=F_{i x}\left(T_{N}\right)=F_{i x}(N)
\end{aligned}
$$

(23) $T: H \rightarrow H, T=I+\lambda(N-I) \quad 7 / 2$ anveged for $\lambda \in(0,2)$ if $N 0,5$-amaged wer

$$
\begin{aligned}
N & =\frac{1}{2} N_{N}+\frac{1}{2} I \Rightarrow Q:=2 N-I \quad \text { nonexpansive (see (22)) } \\
T & =I+\lambda(N-I) \\
& =I+\frac{\lambda}{2}(2 N-2 I) \\
& =\left(1-\frac{\lambda}{2}\right) I+\frac{\lambda}{2}(\underbrace{2 N-I)}_{Q} \Rightarrow \frac{\lambda}{2} \text { a avaged nemexp }
\end{aligned}
$$

(24) $T: H \rightarrow H$ quari-homerp.
\Rightarrow interiection of Halfipace \Rightarrow clased 8 convex is

$$
\text { (25) } \quad x_{n+1}=F\left(x_{n}\right) \quad x_{n \neq 1} \rightarrow x^{*} \in F_{i x}(T)
$$

for $T: H \rightarrow H$ gevaged naviexp.

$$
\begin{array}{ll}
\Rightarrow & T=(1-\alpha) I+\alpha T_{N}, \\
\Rightarrow x_{n+1}=(1-\alpha) x_{n}+\alpha T\left(x_{n}\right) \\
\Rightarrow \text { converges (Mann-lteration) }
\end{array}
$$

(26) $\mathrm{f}: H \rightarrow \mathbb{R}, f^{\prime}$ Lipsclitit cont with k
(1) $T_{1}=I-\mu f^{\prime}, \mu \in\left(0, \frac{2}{k}\right)$ avereged honexpensive
(2) $\operatorname{argmin}_{x \in \in} \quad f(x)=\varnothing$
(3) arguin$x \in C \quad f(x)=F_{i x}\left(P_{c}\left(I-\mu f^{\prime}\right)\right), \mu>0$
from (2): P_{c} is prosiction on closed, convex, nevemplyy set
fram (4): T_{1}, P_{c} both aveaged namexpansive

$$
\Rightarrow T^{\prime}=P_{c} T_{1} \quad \text { is } \alpha^{\prime} \text { are-aged nonexpansive }
$$

$$
\Rightarrow T^{\prime}=(1-\alpha) I+\alpha T_{n}^{\prime}(x)
$$

for $x_{n+1}=(1-x) x_{n}+x \operatorname{Ti}_{N}\left(x_{n}\right) \longrightarrow x^{*} \in F_{i x}\left(T^{\prime}\right)$ from Mann-1eration
from(3): x^{*} Eargmin $x \in c^{x} f(x)$, comshaint μ fram
(2) $P O C S: x_{n} s_{1}=P^{n}\left(x_{n}\right) \quad, P^{n}:=P_{0} p_{1} \ldots P_{n}$
$P_{i} \alpha$-avaraged nohexp. Fi $\Rightarrow p^{n} \alpha^{\prime}$-averaged nomexp.

$$
\Rightarrow \quad x_{n+1}=(1-x) x_{n}+p^{n}\left(x_{n}\right) \quad \Rightarrow x^{*} \in F_{i x} \quad(\operatorname{Mann})
$$

SIRT: $P^{n}:=\sum_{i=1}^{n} \omega_{i} P_{C_{i}}$ also avesaged noverp. \Rightarrow conveges to Fix

$$
\begin{aligned}
& F_{X}(J):=\bigcap_{j \in \mathcal{H}}\left\{x e H \left\lvert\,\langle y-T(y), x\rangle \leqslant \frac{\|y\|^{2}-\| T\left(y \|^{2}\right.}{2}\right.\right\} \\
& \text { 7ix }(T)=\text { Conver } \\
& \frac{\|y\|^{2}-\vec{T}(y) \|^{2}}{2}=c(y) \text { independanh of } x \\
& y^{\prime}:=y-T(y) \\
& \Rightarrow F_{i x}(T)=\bigcap_{y \in \mathcal{H}}\left\{x \in \mathcal{H} \mid\left\langle y^{\prime}, x\right\rangle \leq C(y)\right\}
\end{aligned}
$$

[^0]: ${ }^{1}$ Definition of convexity: $f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)$ for every $\alpha \in(0,1)$ and $x_{1}, x_{2} \in \mathcal{H}$
 ${ }^{2}$ Think of $f^{\prime}(x)$ as the gradient of f at x (provided that it exists) if you are not familiar with the concept of Gâteaux derivatives

