
PBM SS2020 - Second Exam Date

1 General Information

• You will write your answers in the dedicated areas in the format you
want Latex, pseudo-code, etc.

• Note that if you want to write Latex answers you just have to surround
your equation by “(” and “)” (remove the back ticks)

• On top of this you will be able to upload any sheets of computations
you used to get to your answer: Just take a picture/scan of it and
upload it (there is a specific section in each exercise for it). It is
preferable that you separate computations for each section.

• The exam will happen on a day from a time to a time. The time
from a time to a time will be considered to be used only to scan and
upload eventual drafts that you have. (= you have addditional 15

minutes to upload your solutions)

• Finally and most importantly, you will be asked join a Zoom meeting,
turn on your camera and turn off your microphone. Here are the
details :

• Join Zoom Meeting here would be the meeting link

• You can either ask your questions on the Zoom chat (but do not dis-
close any answers), if you have a questions that require secrecy, send
me a private message.

things that were not part of the exam are written in monospace

take the number of points with a grain of salt
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2 Inference with Gaussian random variables

Suppose we have two random variables U and V which are jointly Gaussian
distributed with means E[U ] = a,E[V ] = b and variances E

!
U2

"
= Cα and

E
!
V 2

"
= Cv. We also know the expectation E[UV ] = Cww Assume that

we observe a noisy estimate

Y = V + ε

of V , where ε is a Gaussian noise variable independent of U and of V with
E[ε] = 0 and E

!
ε2
"
= σ2. The following formulas could be helpful: The

inverse of the matrix

S =

#
S11 S12

S21 S22

$

is given by

S−1 =
1

detS

#
S22 −S12

−S21 S11

$

The determinant is
det S = S11S22 − S12S21

The one dimensional Gaussian density for a random variable with mean
E[x] = µ and variance σ2 = E[x− µ]2 is given by

p
%
x | µ,σ2

&
=

1√
2πσ2

e−
(x−µ)2

2σ2

The multivariate Gaussian density for a random vector x = (x1, . . . , xd)
T

with mean µ = (µ1, . . . , µd)
T and covariance matrix S is given by

p(x | µ,S) = 1

(2π)
p
2 |S| 12

exp

'
−1

2
(x− µ)TS−1(x− µ)

(

the formula above might have an error.

usually the denominator is given with the det S and not |S|.

Note, that Sij = E [(xi − µi) (xj − µj)]

2.1 10 Points

Calculate the mean vector m and the covariance matrix S for the random
vector (U, Y )

2



2.2 5 Points

Compute the joint density p(U, Y | m,S)
for the values Cu = 3, Cv = 1, a = 0, b = 1 Cuv = −

√
2 and σ2 = 1

(give the explicit expression for the density distribution).

2.3 10 Points

Compute E[U | Y ] and VAR[U | Y ] for Y =
√
2
2
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3 EM algorithm for a geometric mixture model

Consider a mixture model for a non negative random variable x given by
the density

P (x | q) =
M)

j=1

P (j)P (x | qj)

where the component probabilities P (x | qf ) are exponential densities

P (x | q) = qe−qx

Based on a data set of N i.i.d. samples D = (x1, x2, . . . , xN ) we want to
estimate the parameters q = (q1, . . . , qM , P (1), . . . , P (M)) of this mixture
model.

3.1 8 Points

Derive an expression for the Maximum Likelihood estimate of q1 for M = 1,
where all observations come from the same exponential distribution.

3.2 6 Points

For M > 1 the maximum likelihood estimates of the parameters are to be
determined using an EM algorithm. For the E-step, compute

L (q, qt) = −
N)

i=1

M)

j=1

Pt (j | xi) ln (P (xi | qf )P (j))

where Pt (j | xi) is the responsibility of component j for generating data
point xi, computed with the current values of the parameters.
For the M-step, minimise L with respect to qj and give an explicit expression
for the EM-update of qj .

You don’t have to compute the update of P (j)
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4 Bayes inference and Gibbs sampler

Consider the exponential density

P (x | q) = qe−qx

for x ≥ 0

4.1 5 Points

Show that the conjugate prior density for the exponential density is a Gamma
density Gamma (a, b) which is given by:

p(q | a, b) = C(a, b)qa−1e−bq

where C(a, b) is a normalising constant.

4.2 5 Points

Assume a data set of i.i.d. samples D = (x1, x2, . . . , xN ) drawn from the
exponential density and a Gamma distributed prior p(q) = Gamma(a, b).

Compute the posterior density p(q | D).

4.3 5 Points

What is the MAP value of q?
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5 Outlier detection with Gibbs sampling

We assume a data set D = (x1, . . . , xN ), where observations are drawn
with known probability 1 − c = 0.9 from an exponential density (regular
observations) with unknown parameter q, i.e.

P0(x | q) = qe−qx

but with probability c = 0.1 data points are outliers. In this case, the
distribution of x is assumed to be of the form

P1(x) = Cx2e−gx

where C is a constant and with a known parameter g.
We assume a conjugate prior for the parameter q :

q ∼ Gamma(a, b)

5.1 10 Points

We introduce for each data point a latent indicator variable di ∈ {0, 1},
which decides if a datapoint is regular or an outlier, i.e.

di =

'
1 if xi is an outlier,
0 if xi is a regular data poin

Hence, we have
P (di) = cdi(1− c)1−di

Write down the joint distribution of all variables

P (D,d,q)

where d = (d1, . . . , dN ) is the vector of indicator variables for each data
point.

5.2 ? Points

To perform Bayesian inference we want to use a Gibbs sampler. Compute
the necessary conditional densities

p (di | q,D,d \ i) for i = 1, . . . , N
p(q | D,d)

This was missing in the first exam date.
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6 Variational Inference

Assume we have n observations D = (x1, . . . , xn) generated independently
from a Gaussian density with precision λ

p (xi | λ, Z) =

#
λ

2π

$1/2

exp

*
−λ

2
(xi − Z)2

+

with a latent variable Z ∈ {−1, 1}. This means, that we assume that the
unknown mean of the Gaussian can only be 1 and we have an unknown
precision (inverse variance) given by λ. We assume that the prior probability
of Z is simply given by

P (Z = ±1) =
1

2

and the prior distribution for λ is

p(λ) = γe−γλ

For all questions you are allowed to use the following results which follow
from the derivations given in the lecture:

q1(λ) ∝ exp [EZ [ln p(D,λ, Z)]]
q2(Z) ∝ exp [Eλ | ln p(D,λ, Z)] |]

6.1 4 Points

Write down the joint probability distribution of all variables

p(D,λ, Z)

6.2 8 Points

We want to find the optimal factorizing approximation q(λ, Z) = q1(λ)q2(Z)
which minimises the Kullback-Leibler divergence between q and the poste-
rior p(λ, Z | D). Find the optimal distribution q1(λ) and give expressions
for its parameters in terms of expectations with respect to q2(Z) (written
as E[Z], E

!
Z2

"
, etc).

6.3 8 Points

Unknown. Probably very similar to the other SS2020 exam or maybe

there was no 6.3 but instead a 5.2 (which was missing in the first

exam date).
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7 Grades

This table has been roughly the same for the last few years so it

should be the same for the next few years.

>= Grade

0 5

35 4

40 3,7

45 3,3

50 3

55 2,7

60 2,3

65 2

70 1,7

75 1,3

80 1
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