PBM SS2020 - Second Exam Date

1 General Information

- You will write your answers in the dedicated areas in the format you want Latex, pseudo-code, etc.
- Note that if you want to write Latex answers you just have to surround your equation by "(" and ")" (remove the back ticks)
- On top of this you will be able to upload any sheets of computations you used to get to your answer: Just take a picture/scan of it and upload it (there is a specific section in each exercise for it). It is preferable that you separate computations for each section.
- The exam will happen on a day from a time to a time. The time from a time to a time will be considered to be used only to scan and upload eventual drafts that you have. (= you have addditional 15 minutes to upload your solutions)
- Finally and most importantly, you will be asked join a Zoom meeting, turn on your camera and turn off your microphone. Here are the details :
- Join Zoom Meeting here would be the meeting link
- You can either ask your questions on the Zoom chat (but do not disclose any answers), if you have a questions that require secrecy, send me a private message.

```
things that were not part of the exam are written in monospace
take the number of points with a grain of salt
```


2 Inference with Gaussian random variables

Suppose we have two random variables U and V which are jointly Gaussian distributed with means $E[U]=a, E[V]=b$ and variances $E\left[U^{2}\right]=C_{\alpha}$ and $E\left[V^{2}\right]=C_{v}$. We also know the expectation $E[U V]=C_{\text {ww }}$ Assume that we observe a noisy estimate

$$
Y=V+\varepsilon
$$

of V, where ε is a Gaussian noise variable independent of U and of V with $E[\varepsilon]=0$ and $E\left[\varepsilon^{2}\right]=\sigma^{2}$. The following formulas could be helpful: The inverse of the matrix

$$
\mathbf{S}=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)
$$

is given by

$$
\mathbf{S}^{-1}=\frac{1}{\operatorname{det} \mathbf{S}}\left(\begin{array}{cc}
S_{22} & -S_{12} \\
-S_{21} & S_{11}
\end{array}\right)
$$

The determinant is

$$
\operatorname{det} \mathbf{S}=S_{11} S_{22}-S_{12} S_{21}
$$

The one dimensional Gaussian density for a random variable with mean $E[x]=\mu$ and variance $\sigma^{2}=E[x-\mu]^{2}$ is given by

$$
p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

The multivariate Gaussian density for a random vector $x=\left(x_{1}, \ldots, x_{d}\right)^{T}$ with mean $\mu=\left(\mu_{1}, \ldots, \mu_{d}\right)^{T}$ and covariance matrix S is given by

$$
p(\boldsymbol{x} \mid \boldsymbol{\mu}, \mathbf{S})=\frac{1}{(2 \pi)^{\frac{p}{2}}|\mathbf{S}|^{\frac{1}{2}}} \exp \left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \mathbf{S}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}
$$

the formula above might have an error
usually the denominator is given with the det S and not $|S|$.

Note, that $S_{i j}=E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]$

2.1 10 Points

Calculate the mean vector m and the covariance matrix S for the random vector (U, Y)

2.25 Points

Compute the joint density $p(U, Y \mid m, S)$
for the values $C_{u}=3, C_{v}=1, a=0, b=1 C_{\mathrm{uv}}=-\sqrt{2}$ and $\sigma^{2}=1$
(give the explicit expression for the density distribution).

2.310 Points

Compute $E[U \mid Y]$ and $\operatorname{VAR}[U \mid Y]$ for $Y=\frac{\sqrt{2}}{2}$

3 EM algorithm for a geometric mixture model

Consider a mixture model for a non negative random variable x given by the density

$$
P(x \mid \mathbf{q})=\sum_{j=1}^{M} P(j) P\left(x \mid q_{j}\right)
$$

where the component probabilities $P\left(x \mid q_{f}\right)$ are exponential densities

$$
P(x \mid q)=q e^{-q x}
$$

Based on a data set of N i.i.d. samples $D=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ we want to estimate the parameters $\mathbf{q}=\left(q_{1}, \ldots, q_{M}, P(1), \ldots, P(M)\right)$ of this mixture model.

3.1 8 Points

Derive an expression for the Maximum Likelihood estimate of q_{1} for $M=1$, where all observations come from the same exponential distribution.

3.26 Points

For $M>1$ the maximum likelihood estimates of the parameters are to be determined using an EM algorithm. For the E-step, compute

$$
\mathcal{L}\left(\boldsymbol{q}, \boldsymbol{q}_{t}\right)=-\sum_{i=1}^{N} \sum_{j=1}^{M} P_{t}\left(j \mid x_{i}\right) \ln \left(P\left(x_{i} \mid q_{f}\right) P(j)\right)
$$

where $P_{t}\left(j \mid x_{i}\right)$ is the responsibility of component j for generating data point x_{i}, computed with the current values of the parameters.
For the M-step, minimise \mathcal{L} with respect to q_{j} and give an explicit expression for the EM-update of q_{j}.

You don't have to compute the update of $P(j)$

4 Bayes inference and Gibbs sampler

Consider the exponential density

$$
P(x \mid q)=q e^{-q x}
$$

for $x \geq 0$

4.1 5 Points

Show that the conjugate prior density for the exponential density is a Gamma density Gamma (a, b) which is given by:

$$
p(q \mid a, b)=C(a, b) q^{a-1} e^{-b q}
$$

where $C(a, b)$ is a normalising constant.

4.25 Points

Assume a data set of i.i.d. samples $D=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ drawn from the exponential density and a Gamma distributed prior $p(q)=\operatorname{Gamma}(a, b)$.

Compute the posterior density $p(q \mid D)$.

4.35 Points

What is the MAP value of q ?

5 Outlier detection with Gibbs sampling

We assume a data set $D=\left(x_{1}, \ldots, x_{N}\right)$, where observations are drawn with known probability $1-c=0.9$ from an exponential density (regular observations) with unknown parameter q, i.e.

$$
P_{0}(x \mid q)=q e^{-q x}
$$

but with probability $c=0.1$ data points are outliers. In this case, the distribution of x is assumed to be of the form

$$
P_{1}(x)=C x^{2} e^{-g x}
$$

where C is a constant and with a known parameter g.
We assume a conjugate prior for the parameter q :

$$
q \sim \operatorname{Gamma}(a, b)
$$

5.1 10 Points

We introduce for each data point a latent indicator variable $d_{i} \in\{0,1\}$, which decides if a datapoint is regular or an outlier, i.e.

$$
d_{i}= \begin{cases}1 & \text { if } x_{i} \text { is an outlier } \\ 0 & \text { if } x_{i} \text { is a regular data poin }\end{cases}
$$

Hence, we have

$$
P\left(d_{i}\right)=c^{d_{i}}(1-c)^{1-d_{i}}
$$

Write down the joint distribution of all variables

$$
P(D, \mathbf{d}, \mathbf{q})
$$

where $\mathbf{d}=\left(d_{1}, \ldots, d_{N}\right)$ is the vector of indicator variables for each data point.

5.2 ? Points

To perform Bayesian inference we want to use a Gibbs sampler. Compute the necessary conditional densities

$$
\begin{aligned}
& p\left(d_{i} \mid q, D, \mathbf{d} \backslash i\right) \text { for } i=1, \ldots, N \\
& \quad p(q \mid D, \mathbf{d})
\end{aligned}
$$

This was missing in the first exam date.

6 Variational Inference

Assume we have n observations $D=\left(x_{1}, \ldots, x_{n}\right)$ generated independently from a Gaussian density with precision λ

$$
p\left(x_{i} \mid \lambda, Z\right)=\left(\frac{\lambda}{2 \pi}\right)^{1 / 2} \exp \left[-\frac{\lambda}{2}\left(x_{i}-Z\right)^{2}\right]
$$

with a latent variable $Z \in\{-1,1\}$. This means, that we assume that the unknown mean of the Gaussian can only be 1 and we have an unknown precision (inverse variance) given by λ. We assume that the prior probability of Z is simply given by

$$
P(Z= \pm 1)=\frac{1}{2}
$$

and the prior distribution for λ is

$$
p(\lambda)=\gamma e^{-\gamma \lambda}
$$

For all questions you are allowed to use the following results which follow from the derivations given in the lecture:

$$
\begin{aligned}
& q_{1}(\lambda) \propto \exp \left[E_{Z}[\ln p(D, \lambda, Z)]\right] \\
& \left.q_{2}(Z) \propto \exp \left[E_{\lambda} \mid \ln p(D, \lambda, Z)\right] \mid\right]
\end{aligned}
$$

6.1 4 Points

Write down the joint probability distribution of all variables

$$
p(D, \lambda, Z)
$$

6.2 8 Points

We want to find the optimal factorizing approximation $q(\lambda, Z)=q_{1}(\lambda) q_{2}(Z)$ which minimises the Kullback-Leibler divergence between q and the posterior $p(\lambda, Z \mid D)$. Find the optimal distribution $q_{1}(\lambda)$ and give expressions for its parameters in terms of expectations with respect to $q_{2}(Z)$ (written as $E[Z], E\left[Z^{2}\right]$, etc).

6.3 8 Points

Unknown. Probably very similar to the other SS2020 exam or maybe there was no 6.3 but instead a 5.2 (which was missing in the first exam date).

7 Grades

This table has been roughly the same for the last few years so it should be the same for the next few years.

$>=$	Grade
0	5
35	4
40	3,7
45	3,3
50	3
55	2,7
60	2,3
65	2
70	1,7
75	1,3
80	1

