First Memory Log - ReSyst

WiSe 2022/2023

Tipp:

MTV reuses prompts between exams that take place on the same day.

1st Prompt

Determine the LTS for the following CCS processes:

$$
\begin{gathered}
\mathbf{H} \stackrel{\text { def }}{=} \tau . \mathbf{0} \\
\mathbf{L} \stackrel{\text { def }}{=} \tau . \mathbf{L} \\
\mathbf{M} \stackrel{\text { def }}{=} \mathbf{H}+\mathbf{L} .
\end{gathered}
$$

Solution

Let Act $=\{\tau\}$. The LTS to the given CSS processes is T_{1} with

$$
\left.T_{1}=\left(\operatorname{Proc}_{1}, \operatorname{Act}^{\operatorname{Tran}}\right)_{1}\right)=(\{\mathbf{H}, \mathbf{L}, \mathbf{M}, \mathbf{0}\}, \operatorname{Act},\{(\mathbf{H}, \tau, \mathbf{0}),(\mathbf{L}, \tau, \mathbf{L}),(\mathbf{M}, \tau, \mathbf{0}),(\mathbf{M}, \tau, \mathbf{L})\}) .
$$

Or graphically:

2nd Prompt

We define

$$
\begin{aligned}
\mathbf{A}_{0} & \stackrel{\text { def }}{=} \mathbf{0}, \text { and } \\
\mathbf{A}_{i+1} & \stackrel{\text { def }}{=} \tau . \mathbf{A}_{i}, \text { for all } i \in \mathbb{N}^{+} .
\end{aligned}
$$

Determine the LTS for these CSS processes.

Solution

The LTS to the given CSS process is given by $T_{2}=\left(\operatorname{Proc}_{2}, \mathrm{Act}, \operatorname{Tran}_{2}\right)$ with:

$$
\begin{aligned}
& \text { Proc }=\left\{\mathbf{A}_{i} \mid i \in \mathbb{N}\right\} \\
& \operatorname{Tran}=\left\{\left(\mathbf{A}_{i}, \tau, \mathbf{A}_{i-1}\right) \mid i \in \mathbb{N} \wedge i \geq 1\right\} .
\end{aligned}
$$

Or graphically:

$$
\mathbf{A}_{0} \longleftarrow \tau=\mathbf{A}_{1} \longleftarrow \frac{\tau}{\longleftarrow} \mathbf{A}_{2} \longleftarrow \tau
$$

3rd Prompt

Now extend the LTS from the second prompt to include \mathbf{A} where

$$
\mathbf{A} \stackrel{\text { def }}{=} \sum_{i \in \mathbb{N}} \tau \cdot A_{i} .
$$

Solution

The LTS to the given CSS process is $T_{3}=\left(\operatorname{Proc}_{3}, \mathrm{Act}, \operatorname{Tran} 3\right)$ with:

$$
\begin{aligned}
& \operatorname{Proc}_{3}=\operatorname{Proc}_{2} \cup\{\mathbf{A}\} \\
& \operatorname{Tran}_{3}=\operatorname{Tran}_{2} \cup\left\{\left(\mathbf{A}, \tau, \mathbf{A}_{i}\right) \mid i \in \mathbb{N}\right\} .
\end{aligned}
$$

Or graphically:

4th Prompt

Now extend the LTS from the third prompt to include I where

$$
\mathbf{I} \stackrel{\text { def }}{=} \mathbf{A}+\mathbf{L} .
$$

And \mathbf{L} has the same definition as in the first prompt.

Solultion

The LTS to the given CSS process is $T_{4}=\left(\operatorname{Proc}_{4}, \mathrm{Act}, \operatorname{Tran} 4\right)$ with:

$$
\begin{aligned}
& \operatorname{Proc}_{4}=\operatorname{Proc}_{3} \cup\{\mathbf{L}, \mathbf{I}\} \\
& \operatorname{Tran}_{4}=\operatorname{Tran}_{3} \cup\left\{\left(\mathbf{I}, \tau, \mathbf{A}_{i}\right) \mid i \in \mathbb{N}\right\} \cup\{(\mathbf{B}, \tau, \mathbf{L}),(\mathbf{L}, \tau, \mathbf{L})\} .
\end{aligned}
$$

Or graphically:

5th Prompt

Does A~I hold in the LTS described in the fourth prompt.

Solution

It does not hold.

6th Prompt

Prove that $\mathbf{A} \sim \mathbf{I}$ dose not hold using gametheory.

Solution

We prove this statement by describing a winning strategy for the attacker. The attacker starts with the move $(\mathbf{A}, \mathbf{I}) \gtrdot((\mathbf{A}, \mathbf{L}),(\tau, r))$. The defender then has to respond with $((\mathbf{A}, \mathbf{L}),(\tau, r)) \rightarrow\left(\mathbf{A}_{i}, \mathbf{L}\right)$, for some $i \in \mathbb{N}$. The attacker can force the defender into a winning position in i rounds by repeatably using $\mathbf{L} \xrightarrow{\tau} \mathbf{L}$ to force the defender into defending $\left(\left(\mathbf{A}_{0}, \mathbf{L}\right),(\tau, r)\right)$.

7th Prompt

Does $\mathbf{A} \approx \mathbf{I}$ likewise not hold?

Solution

No, $\mathbf{A} \approx \mathbf{I}$ holds. The attacker can only make moves using τ since Act $=\{\tau\}$, the defender can always respond to such a move, since $p \stackrel{\tau}{\Rightarrow} p$ holds for all $p \in \operatorname{Proc}_{4}$.

8th Prompt

Find a distinguishing HML formula for \mathbf{I} and \mathbf{A}.

Solution

\mathbf{I} and \mathbf{A} are distinguished by

$$
\begin{aligned}
& F=X \\
& X \stackrel{\max }{=}\langle\tau\rangle X .
\end{aligned}
$$

9th Prompt

Determine the semantics of F.

Solution

$$
\llbracket F \rrbracket=\operatorname{FIX} \mathcal{O}_{(\tau) X}
$$

We therefore need to find the greatest fixpoint of the complete lattice ($2^{\mathrm{Proc}_{4}}, \subseteq$) with regards to the monotonic function $\mathcal{O}_{(\tau) X}$. Since this lattice is not finite we cannot use the fixpoint theorem of Knaster and Tarski to guaranteed that we can find a fixpoint.

None the less we can observe that the repeated application of $\mathcal{O}_{(\tau) X}$ on Proc ${ }_{4}$ removes a \mathbf{A}_{i} with each step. From this we conclude, what we can also intuitively see, that $\llbracket F \rrbracket=\{\mathbf{L}, \mathbf{I}\}$.

10th Prompt

Why is this a fixpoint?

Solution

Because $\mathcal{O}_{\{\tau \mid X}(\{\mathbf{L}, \mathbf{I}\})=\{\mathbf{L}, \mathbf{I}\}$.

11th Prompt

Why is this the greatest fixpoint?

Solution

Intuitively we can see that $\mathbf{A}_{0} \notin P$ if P is a fixpoint of $\mathcal{O}_{(\tau) X}$. And that $\mathbf{A}_{i} \in P \Longrightarrow \mathbf{A}_{i-1} \in P$ for all $i \in \mathbb{N}$ and $i>1$ if P is a fixpoint.
$\{\mathbf{L}, \mathbf{I}\}$ is therefore the greatest fixpoint.

