Klausur im Lehrgebiet

Signale und Systeme

- Prof. Dr.-Ing. Thomas Sikora -

Na	me:		••			□ Bachelor		□ ET	
					☐ Master		□ TI		
Voi	rname:					□ Diplom		□ KW	
						☐ Magister			
Ma	tr.Nr:					☐ Erasmus			
	Ich bin mit der Veröffer	ntlichu	ng des	Klaus	urerge	ebnisses im We)		
	unter meiner verkürzte	n Matr	rikelnu	ımmer	einve	rstanden.			
		A 1	4.0	4.0	DD				
		A1	A2	A3	BP	Summe			
Hinv	veise:								
1.	Füllen Sie vor Bearbeitu	ng der l	Klausu	r das D	eckbla	tt vollständig ui	ıd sor	gfältig aus.	
2.	Schreiben Sie die Lösung	gen jew	eils dir	ekt auf	f den fr	eien Platz unter	nalb d	er Aufgabenstellung	
3.	Die Rückseiten können	bei Be	edarf z	usätzli	ch beso	chrieben werder	ı. Soll	te der Platz auf de	r
	Rückseite nicht ausreich								
	sicht teilt auf Anfrage zu	sätzlic	h leere	e Blätte	er aus.				
4.	Ein nichtprogrammierb	arer T	aschen	rechne	r und e	ein einseitig ha	ıdbes	chriebenes DIN-A4	-
	Blatt sind als Hilfsmittel	erlaubt	t.						
5.	Bearbeitungszeit: 90 min	n.							
6.	Zum Schreiben keinen Bleistift und auch keinen Rotstift verwenden!								
7.	7. Bei Multiple-Choice-Fragen gibt es je richtiger Antwort einen halben Punkt, je falscher Antwort								
	wird ein halber Punkt a	bgezog	gen. In	schle	chteste	n Fall wird die	Aufga	be mit null Punkter	1
	bewertet.								
8.	Grundsätzlich müssen be	ei allen	Skizze	n die A	chsen	vollständig bes	chrifte	et werden.	
Ich h	abe die Hinweise gelesen ι	ınd ver	rstande	:n:				(Unterschrift)	
	Technische Universität Berl	in		Kl	ausur im	Lehrgebiet			
	Fachgebiet Nachrichtenübertrag	gung		Si	gnale ur	nd Systeme		Blatt: 1	

Signale und Systeme

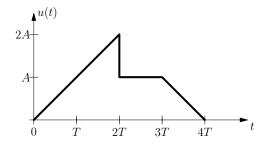
am 12.10.2010

Fachgebiet Nachrichtenübertragung

Prof. Dr.-Ing. T. Sikora

Inhaltsverzeichnis

1	Zeitkontinuierliche Signale	3
2	Systembeschreibung und Abtastung	7
3	Zeitdiskrete Signale und Systeme	10


Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 2
Prof. DrIng. T. Sikora	am 12.10.2010	

1 Zeitkontinuierliche Signale

13 Punkte

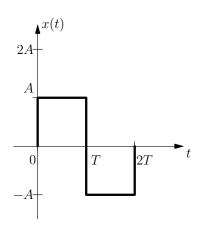
1.1 Gegeben sei das folgende zeitkontinuierliche Signal u(t).

a) Geben Sie eine geschlossene mathematische Beschreibung von u(t) unter Zuhilfenahme von Elementarsignalen an.

b) Skizzieren Sie das Signal
$$\frac{3}{4}u\left(2\left(\frac{t}{3}+T\right)\right)$$
 im Bereich $-5T \le t \le 5T$.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 3
Prof. DrIng. T. Sikora	am 12.10.2010	

1.2 Autokorrelation und Kreuzkorrelation

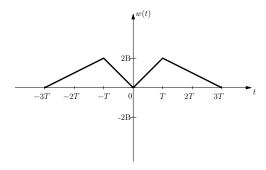

9 P

a) Geben Sie die mathematische Definition der Kreuzkorrelationsfunktion $r_{uv}(\tau)$ 1 P an.

b) Zeigen Sie, dass für die Autokorrelationsfunktion $r_{uu}(\tau)$ die Symmetriebedingung $r_{uu}(\tau)=r_{uu}(-\tau)$ gilt.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 4
Prof. DrIng. T. Sikora	am 12.10.2010	

c) Berechnen Sie für das gegebene Signal x(t) die Autokorrelationsfunktion 5 P $r_{xx}(\tau)$.

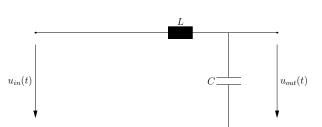


Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 5
Prof. DrIng. T. Sikora	am 12.10.2010	

d) Skizzieren Sie $r_{xx}(\tau)$ im Bereich $-4T \le \tau \le 4T$.

1 P

1.3 Gegeben sei das folgende Signal w(t). Bestimmen Sie die Fouriertransformierte des Signals mit Hilfe der Derivierten. Fassen Sie alle e-Funktionsterme so weit wie möglich zu trigonometrischen Funktionen zusammen.


Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 6
Prof. DrIng. T. Sikora	am 12.10.2010	

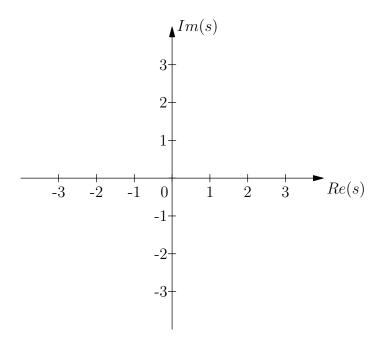
2 Systembeschreibung und Abtastung

9 Punkte

3 P

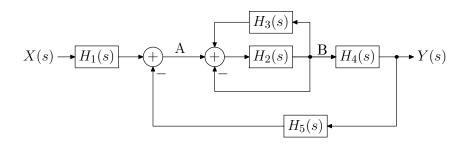
2.1 Gegeben sei das folgende Netzwerk.

a) Bestimmen Sie die Übertragungsfunktion H(s) des Systems im Laplacebereich 2 P unter Verwendung der komplexen Impedanzen.


b) Geben Sie die Impulsantwort des Systems im Zeitbereich an. 1 P $\textit{Hinweis:} \sin(at) \leftrightarrow \frac{a}{s^2+a^2}$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 7
Prof. DrIng. T. Sikora	am 12.10.2010	

2.2 Von einem realen zeitkontinuierlichen System mit 4 Extremstellen (Polstellen und Nullstellen zusammen) seien folgende Eigenschaften bekannt. Skizzieren Sie das dazugehörige PN-Diagramm.


1)
$$\lim_{\omega \to \infty} |H(j\omega)| = 1$$

- 2) Das System ist stabil.
- 3) H(3j) = 0
- 4) Der Imaginärteil einer Polstelle ist 2.
- 5) $|H(0)| = \frac{9}{8}$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 8
Prof. DrIng. T. Sikora	am 12.10.2010	

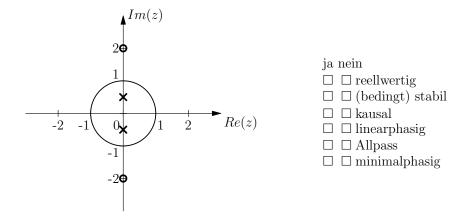
2.3 Gegeben sei das folgende Blockschaltbild.

a) Fassen Sie das System zwischen den Punkten A und B zu einem Teilsystem 2 P $H_6(s)$ zusammen. Geben Sie $H_6(s)$ in Abhängigkeit von $H_2(s)$ und $H_3(s)$ an.

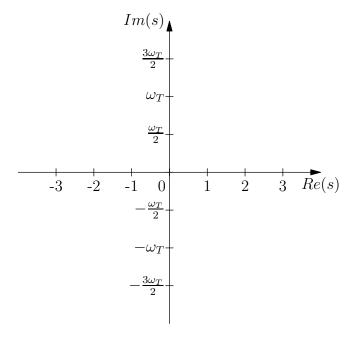
b) Bestimmen Sie die Gesamtübertragungsfunktion des Systems in Abhängigkeit 2 P von $H_1(s),...,H_5(s)$.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 9
Prof. DrIng. T. Sikora	am 12.10.2010	

3 Zeitdiskrete Signale und Systeme

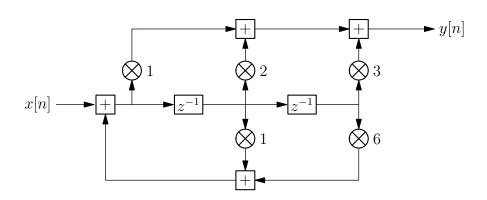

10 Punkte

3.1 PN-Diagramme zeitdiskreter Systeme


4 P

3 P

a) Gegeben sei das folgende PN-Diagramm eines zeitdiskreten Systems. Kreuzen Sie rechts die entsprechenden Eigenschaften des Systems an.



Skizzieren Sie weiterhin im untenstehenden Koordinatensystem die PNVerteilung des entsprechenden zeitkontinuierlichen Systems vor der Abtastung.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 10
Prof. DrIng. T. Sikora	am 12.10.2010	

3.2 Gegeben sei das folgende zeitdiskrete Filter.

a) Geben Sie die Systemfunktion H(z) des Filters an.

b) Bestimmen Sie die Lage der Pol- und Nullstellen.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 11
Prof. DrIng. T. Sikora	am 12.10.2010	

4 P

1 P

c) Handelt es sich um ein FIR- oder ein IIR-Filter? Begründen Sie ihre Entschei- 1 P dung.

d) Geben Sie die Differenzengleichung des Filters an.

- 3.3 Ein FIR Filter habe die Impulsantwort $h(n) = \{1, 0, 2\}$ 2 P
- a) Bestimmen Sie die Antwort des Filters auf das Eingangssignal x(n)=1 P $\{1,-2,-1\}$ mittels zeitdiskreter Faltung.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 12
Prof. DrIng. T. Sikora	am 12.10.2010	

b) Bestimmen Sie das Ergebnis der Faltung (im Zeitbereich) aus x(n) und h(n) 1 P falls diese mit Hilfe einer 3-Punkte-DFT im Frequenzbereich berechnet werden würde.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 13
Prof. DrIng. T. Sikora	am 12.10.2010	