Klausur im Lehrgebiet

Signale und Systeme

- Prof. Dr.-Ing. Thomas Sikora -

Na	Name: 🗆 Bachelor						□ ET		
☐ Master					\Box TI				
Voi	rname:					□ Diplom		□ KW	
						☐ Magister		□	
Ma	tr.Nr:		••			□ Erasmus			
	Ich bin mit der Veröffen	ıtlichu	ng des	Klaus	urerge	bnisses im We	b		
	unter meiner verkürzte	n Matı	rikelnu	ımmer	einve	rstanden.			
		A1	A2	A3	BP	Summe			
		ΛΙ	ΛΔ	ЛЭ	DF	Summe			
Hinv	veise:								
1.	Füllen Sie vor Bearbeitur	ng der	Klausu	r das D	eckblat	t vollständig u	nd s	s orgfältig aus.	
2.	Schreiben Sie die Lösung	gen jew	eils dir	ekt auf	f den fr	eien Platz unter	hall	b der Aufgaben	stellung.
3.	Die Rückseiten können bei Bedarf zusätzlich beschrieben werden. Sollte der Platz auf der								
	Rückseite nicht ausreiche	en, ist	denno	ch kei n	eigen	es Papier zu ve	erw	enden . Die Kla	usurauf-
	sicht teilt auf Anfrage zu	sätzlic	he lee	re Blät	ter aus	•			
4.	Ein nichtprogrammierbarer Taschenrechner und ein einseitig handbeschriebenes DIN-A4-								
	Blatt sind als Hilfsmittel erlaubt.								
5.	Bearbeitungszeit: 90 min.								
6.	Keinen Bleistift und auch keinen Rotstift verwenden!								
7.	7. Bei Multiple-Choice-Fragen gibt es je richtiger Antwort einen halben Punkt, je falscher Antwort								
	wird ein halber Punkt abgezogen. Im schlechtesten Fall wird die Aufgabe mit null Punkten								
	bewertet.								
8.	8. Grundsätzlich müssen bei allen Skizzen die Achsen vollständig beschriftet werden.								
Iah k	Ich habe die Hinweise gelesen und verstanden: (Unterschrift)								
ICII I	iade die minweise gelesen t	mu vel	stanue	:11		• • • • • • • • • • • •	• • •	(Omerschill	L)
	Technische Universität Berl	in		Kl	ausur im	Lehrgebiet			

Signale und Systeme

am 30.9.2013

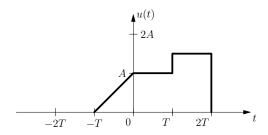
Blatt: 1

Fachgebiet Nachrichtenübertragung

Prof. Dr.-Ing. T. Sikora

Inhaltsverzeichnis

1	Zeitkontinuierliche Signale	3
2	Zeitkontinuierliche Systeme und Abtastung	10
3	Zeitdiskrete Signale und Systeme	14


Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 2
Prof. DrIng. T. Sikora	am 30.9.2013	

1 Zeitkontinuierliche Signale

12 Punkte

1.1 Gegeben sei das folgende zeitkontinuierliche Signal u(t).

a) Geben Sie die Energie E_u des Signals an.

b) Skizzieren Sie das Signal $u\left(2\left(t+\frac{T}{2}\right)\right)$.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 3
Prof. DrIng. T. Sikora	am 30.9.2013	

1.2 Gegeben seien die folgenden Signale h(t) und x(t).

$$h(t) = \begin{cases} A\left(1 - e^{-\frac{t}{T}}\right), T > 0, & \text{falls } t > 0\\ 0, & \text{falls } t \le 0 \end{cases}$$

$$x(t) = B \cdot \sqcap_T \left(t - \frac{T}{2}\right)$$

a) Skizzieren Sie die beiden Funktionen im Bereich $-2T \le t \le 2T$.

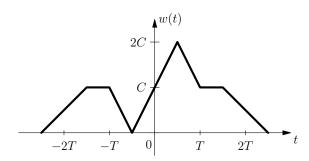
1 P

b) Berechnen Sie die Antwort y(t) eines Filters mit der Impulsantwort h(t) auf das Eingangssignal x(t).

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 4
Prof. DrIng. T. Sikora	am 30.9.2013	

c) Skizzieren Sie y(t) im Bereich $-3T \le t \le 3T$.

2 P


d) Beweisen Sie allgemein den Zusammenhang $r_{uv}(-t) = u(t) * v(-t)$.

1 P

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 5
Prof. DrIng. T. Sikora	am 30.9.2013	

1.3 Berechnen Sie die Fouriertransformierte des folgenden Signals. Fassen Sie das Ergebnis so weit wie möglich zu trigonometrischen Funktionen zusammen.

2 P

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 6
Prof. DrIng. T. Sikora	am 30.9.2013	

2 Zeitkontinuierliche Systeme und Abtastung

10 Punkte

2.1 Gegeben sei das Signal $u(t) = A \cdot \cos(\omega_0 t)$, $\omega_0 = \frac{2\pi}{T_0}$.

7 P

a) Skizzieren Sie u(t) im Bereich $-T_0 \le t \le T_0$.

1 P

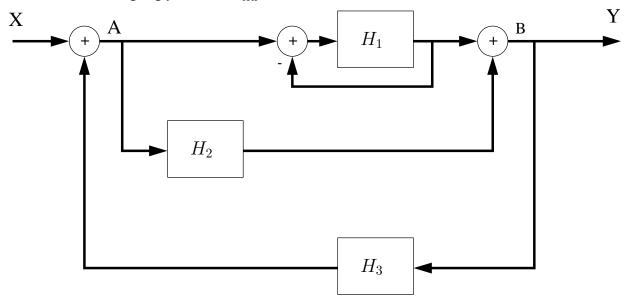
b) Geben Sie das Spektrum $U(j\omega)$ an.

1 P

c) Das Signal werde mittels Flattop-Sampling ($\alpha=\frac{1}{2},\ \omega_T=3\omega_0$) abgetastet. 2 P Skizzieren Sie den Verlauf des abgetasteten Signals $u_A(t)$ im Bereich $-T_0\leq t\leq T_0$.

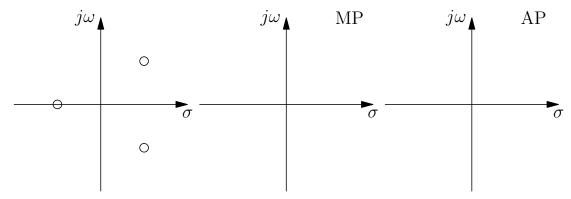
Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 7
Prof. DrIng. T. Sikora	am 30.9.2013	

d) Skizzieren Sie das Spektrum $U_a(j\omega)$ des mittels Flattop-Sampling ($\alpha=\frac{1}{2}$, 2 P $\omega_T=3\omega_0$) abgetasteten Signals im Bereich $-12\omega_0\leq\omega\leq12\omega_0$.


e) Das Signal u(t) werde nun ideal mit $\omega_T=1,5\omega_0$ abgetastet. Skizzieren Sie für 1 P diesen Fall das Spektrum im Bereich $-4\omega_0\leq\omega\leq4\omega_0$.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 8
Prof. DrIng. T. Sikora	am 30.9.2013	

2.2 Gegeben sei das folgende Blockschaltbild. Geben Sie die Gesamtübertragungsfunktion $H_{\rm ges}(s)$ in Abhängigkeit von den Einzelübertragungsfunktionen $H_i(s)$, i=1,...,4, an. Fassen Sie das Ergebnis so weit wie möglich zusammen.

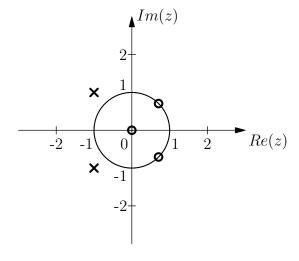

2 P

Hinweis: Einfaches Ablesen funktioniert bei dieser Aufgabe nicht! Fassen Sie zunächst das System zwischen den Punkten A und B zu einer Teilübertragungsfunktion H_{teil} zusammen.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 9
Prof. DrIng. T. Sikora	am 30.9.2013	

Zerlegen Sie das folgende System in Allpass (AP) und minimalphasigen Anteil1 P(MP).

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 10
Prof. DrIng. T. Sikora	am 30.9.2013	


3 Zeitdiskrete Signale und Systeme

10 Punkte

3.1 PN-Diagramme zeitdiskreter Systeme

4 P

a) Gegeben sei das folgende PN-Diagramm eines zeitdiskreten Systems. Kreuzen Sie rechts die entsprechenden Eigenschaften des Systems an. 3 P

ja nein
□ reellwertig
□ □ (bedingt) stabil

□ □ minimalphasig

b) Skizzieren Sie den Amplitudengang des Systems.

1 P

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 11
Prof. DrIng. T. Sikora	am 30.9.2013	

3.2 Gegeben sei die folgende Differenzengleichung eines zeitdiskreten Filters. 5 P

$$y(n) = x(n) + 2x(n-1) + 3x(n-2) - \frac{1}{2}y(n-1)$$

a) Handelt es sich um ein FIR- oder ein IIR-Filter? Begründen Sie Ihre Antwort. 1 P

b) Berechnen Sie die ersten vier Elemente der Impulsantwort des Filters. 2 P

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 12
Prof. DrIng. T. Sikora	am 30.9.2013	

c) Geben Sie die Systemfunktion des Filters an und bestimmen Sie die Lage der Pol- und Nullstellen.

1 P

d) Skizzieren Sie die Struktur des Filters in Direktform. 1 P

3.3 Berechnen Sie die Ergebnisse von Faltung und zyklischer Faltung der Signale 1 P $u=\{1,0,2\} \text{ und } v=\{-1,-2,0\}.$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 13
Prof. DrIng. T. Sikora	am 30.9.2013	