Stochastik für Informatiker
Hinweise zur Klausur am 18.07.01

Sitzordnung
Nehmen Sie Ihre Plätze bitte derart ein, als daß zu Ihrem linken und rechten Nachbarn, falls vorhanden, jeweils zwei Plätze leer bleiben und zudem nur jede zweite Sitzreihe besetzt ist.

Hilfsmittel, Täuschung und Abgabe
Als Hilfsmittel sind ausschließlich zugelassen: Skript, Übungsblätter, eigene Aufzeichnungen, ein Buch (Lehrbuch oder Formelsammlung), Taschenrechner.

Der Versuch der Täuschung oder Benutzung nicht zugelassener Hilfsmittel hat zur Folge, daß die Klausur als nicht bestanden gilt.

Schreiben Sie mit Kugelschreiber, Füllfederhalter oder Fineliner, nicht aber mit Bleistift und nicht in der Farbe Rot. Mit Bleistift oder rot geschriebener Text wird nicht bewertet.

Lösung der Aufgaben
Die Aufgaben sind so zu lösen, daß der Rechen- und Lösungsweg nachvollziehbar ist. Insbesondere genügt es nicht, lediglich ein Ergebnis ohne nähere Erläuterung oder Begründung anzugeben.

Neben den hier getroffenen speziellen Bestimmungen gelten die in den einschlägigen Prüfungsordnungen getroffenen Bestimmungen über prüfungsrelevanten Studienleistungen.
Klausur

Name: ... Matrikelnr.:

<table>
<thead>
<tr>
<th>Punkte</th>
<th>Note</th>
</tr>
</thead>
</table>

Ordnungsnr.:

Aufgabe 1 (5 Punkte)
Laut Statistik infiziert sich eine von 10.000 Personen mit einem gewissen Virus. Das Resultat eines entsprechenden Antikörpertests ist bei 99 % der Infizierten positiv.
a) Wie groß darf die Wahrscheinlichkeit eines falsch-positiven Tests sein, damit die Wahrscheinlichkeit, daß bei positivem Testergebnis tatsächlich eine Infektion vorliegt, mindestens 80 % beträgt? Dabei versteht man unter der Wahrscheinlichkeit eines falsch-positiven Tests jene Wahrscheinlichkeit, daß unter der Annahme, eine Person sei nicht infiziert, der Test dennoch falsch positiv ausfällt.
b) Wie groß ist, unter Berücksichtigung des Ergebnisses aus a), die Wahrscheinlichkeit, daß bei negativem Testergebnis keine Infektion vorliegt?

Aufgabe 2 (7 Punkte)
a) Wie groß ist die Wahrscheinlichkeit, daß mindestens 2 Fahrzeuge in Richtung A während der Rotphase ankommen?
b) Wie groß ist die Wahrscheinlichkeit, daß mindestens 2 Fahrzeuge in Richtung B während der Rotphase ankommen?
c) Wie groß ist die Wahrscheinlichkeit, daß in jeder Richtung mindestens zwei Fahrzeuge während der Rotphase ankommen?
d) Wie groß ist die Wahrscheinlichkeit, daß in beiden Richtungen zusammen mindestens zwei Fahrzeuge während der Rotphase ankommen?

Aufgabe 3 (5 Punkte)
Eine faire Münze werde 900-mal geworfen. Gesucht ist die Wahrscheinlichkeit, daß das Ereignis Kopf oben zwischen 420- und 480-mal auftritt.
a) Man gebe eine Formel zur exakten Bestimmung an und begründe diese. (Nicht ausrechnen!)
b) Welche Methoden sind geeignet, die Wahrscheinlichkeit näherungsweise zu bestimmen?
c) Von den unter b) genannten, wende man die bestmögliche Näherung an und bestimme den Wert dieser Näherung für die gesuchte Wahrscheinlichkeit.

Aufgabe 4 (7 Punkte)
Sei \((X_k)\) eine Markoff-Kette auf dem Zustandsraum \(S = \{A, B, C, D, E\}\) mit den absorbierenden Zuständen \(A\) und \(E\): Ist das System in einem der Zustände \(B, C\) oder \(D\), so geht es mit Wahrscheinlichkeit \(1/3\) in den durch den im Alphabet vorhergehenden Buchstaben beschriebenen Zustand über und mit der Wahrscheinlichkeit \(2/3\) in den durch den im Alphabet nachfolgenden Buchstaben beschriebenen Zustand über. Ist das System im Zustand \(A\) oder \(E\), so verbleibt es dort.
a) Man beschreibe das System durch ein geeignetes Diagramm und durch die stochastische Matrix.
b) Man bestimme eine Gleichgewichtsverteilung. Ist diese eindeutig bestimmt?
c) Wie lautet die Verteilung von \(X_{1000}\), wenn mit einer Gleichgewichtsverteilung gestartet wird?
Das System werde nun wie folgt abgeändert: Der Zustand \(A\) bleibe weiterhin absorbierend; ist das System also im Zustand \(A\), so verbleibt es dort. Der Zustand \(E\) dagegen sei nun reflektierend; ist das System im Zustand \(E\), so geht es garantiert in den Zustand \(D\) über.
d) Wiederum beschreibe man die Markoff-Kette durch ein Diagramm und die stochastische Matrix.
e) Wiederum bestimme man eine Gleichgewichtsverteilung. Ist diese eindeutig bestimmt?