

Aufgabe 1: MIPS Assemblersprache

Übersetzen Sie die folgende Funktion nach MIPS-Assembler.
 Beachten Sie dabei die MIPS-Register Konventionen. Pseudo-Instruktionen dürfen verwendet werden.

```
void clip(int a[], int n)
{
   int i;
   for (i=0; i<n; i++) {
      if (a[i]<0)
        a[i]=0;
      else if (a[i]>255)
        a[i] = 255;
      }
   }
}
```

TochGL-2 Rochmororganication

Aufgabe 2: Zahlendarstellungen

- Stellen Sie die Dezimalzahl –87 als 8-Bit 2-Komplement-Zahl dar.
- Stellen Sie die Zahl 10,25 in binärer Darstellung nach IEEE 754 mit einfacher Genauigkeit dar.

TechGI-2, Rechnerorganisation

Aufgabe 2: Lösungsblatt

- Stellen Sie die Dezimalzahl –87 als 8-Bit 2-Komplement-Zahl dar.
- Stellen Sie die Zahl 10,25 in binärer Darstellung nach IEEE 754 mit einfacher Genauigkeit dar.

TechGI-2, Rechnerorganisation

Aufgabe 3. Prozessorleistung

 Drei Programme (P1, P2 und P3) werden auf zwei verschiedenen Computern (M1 und M2) ausgeführt. Die folgende Tabelle zeigt die Ausführungszeiten beider Programme auf den beiden Computern.

	M1	M2
P1	1	10
P2	100	10
P3	10	5

- a) Welches System ist schneller wenn die Ausführungszeit auf M1 normiert wird und der arithmetisch Mittelwert verwendet wird? Begründen Sie ihre Antwort.
- b) Welches System ist schneller wenn die Ausführungszeit auf M2 normiert wird und der arithmetisch Mittelwert verwendet wird? Begründen Sie ihre Antwort.
- c) Welches System ist schneller wenn der geometrische Mittelwert verwendet wird. Begründen Sie Ihre Antwort.

TechGI-2, Rechnerorganisation

Aufgabe 3. Lösungsblatt

 a) Welches System ist schneller wenn die Ausführungszeit auf M1 normiert wird und der arithmetische Mittelwert verwendet wird? Begründen Sie ihre Antwort.

	M1	M2
P1	1	10
P2	100	10
P3	10	5

	M1	M2
P1		
P2		
P3		
arithmetische Mittelwert		

TechGI-2, Rechnerorganisation

Aufgabe 3. Lösungsblatt

 b) Welches System ist schneller wenn die Ausführungszeit auf M2 normiert wird und der arithmetische Mittelwert verwendet wird?
 Begründen Sie ihre Antwort.

	M1	M2
P1	1	10
P2	100	10
P3	10	5

	M1	M2
P1		
P2		
Р3		
arithmetische Mittelwert		

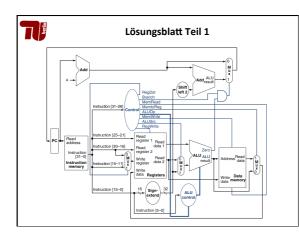
TochGL-2 Bochmororganicatio

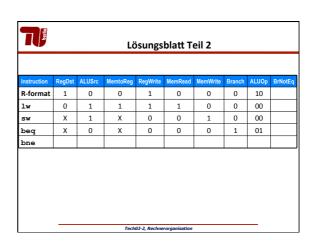
Aufgabe 3. Lösungsblatt

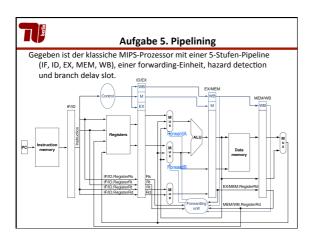
c) Welches System ist schneller wenn der geometrische Mittelwert verwendet wird. Begründen Sie Ihre Antwort.

	M1	M2
P1		
P2		
P3		
geometrische Mittelwert		

	M1	M2
P1		
P2		
Р3		
geometrische Mittelwert		


TechGI-2, Rechnerorganisation




Aufgabe 4. Der Eintaktprozessor

- Wir möchten den Eintaktprozessor um den Befehl **bne** (branch not equal) erweitern.
 - Ergänzen Sie benötigte Datenpfade und Steuersignale in der Abbildung auf der nächsten Folie
 - Geben Sie die Werte an, die die Steuersignale haben müssen, so dass der Datenpfad den bne-Befehl ausführt. Verwenden Sie falls möglich Don't Cares.

TechGI-2, Rechnerorganisation

Aufgabe 5. Pipelining (cont' d)

 Die folgende Tabelle zeigt die Quell-/Ziel-Register der Befehle in der EX, MEM und WB Stufe (z.B. ID/EX.Rs ist die Abkürzung für ID/ EX.RegisterRs). Vervollständigen Sie die Tabelle:

ID/EX.Rs	ID/EX.Rt	EX/MEM.Rd	EX/Mem.RegWrite	MEM/WB.Rd	MEM/WB.RegWrite	ForwardA	ForwardB
6	7	7	0	8	1		
6	7	6	1	7	1		
6	7	6	1	6	1		
6	0	0	1	6	0		

TochGL-2 Backmararanicatio

Aufgabe 6. Caches

- Der AMD Athlon 64 Prozessor Befehlscache auf erster Ebene hat folgende Eigenschaften:
 - Kapazität: 64 KB
 - > 2-fach satzassoziativ
 - ➤ Blockgröße: 64 Bytes
 - ➤ Adresslänge: 64 Bit
- Wie groß ist der Index und wie groß ist der Tag?
- Auf welchem Satz wird Byteadresse 64132 abgebildet? Geben Sie den Index an.

TechGI-2, Rechnerorganisation