TheGI 1: Grundlagen und Algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 4. Januar 2011

Schriftliche Leistungskontrolle (ZK)

Studentenide	ntifikatio	n:					
Nachnan	ΛE						
Vorname							
Matrikei	LNUMM	ER					
STUDIENGANG		☐ In	☐ Informatik Bachelor, ☐				
Tutor			□ Christina,□ Florian,□ Katja,□ Mascha,□ Paul, □ Sarkaft,□ Sven,□ Tim,□ Tsveti,□ Uwe				
Aufaabanüba	majaht.						
Aufgabenübe AUFGABE	SEITE	Punk	ге Тн	EMENBERE:	ICH		
1	2	15	Me	nge			
2	3	17	l	bildung			
3	4	30					
4	6	26	Struktur und Auswertung				
5	10	12					
Korrektur:							
Aufgabe		1	2	3	4	5	\sum
Punkte		15	17	30	26	12	100
Erreicht							
Korrekto	OR						
FINCLET		 					

<i>Matrikelnummer:</i>	Name:

Aufgabe 1: Menge (15 Punkte)

a. (8 Punkte) (**)

Kreuze genau die richtigen Aussagen an.

Achtung: Für falsch gesetzte Kreuze erhältst du Punktabzüge.

$$\square \ \forall A,B,C \ . \ (A \setminus B) \cap C = ((A \cup (B \cup C)) \setminus B) \cap (A \cap C)$$

$$\square \mathbb{N} = \{ x \in \mathbb{N} \mid x > 10 \Rightarrow x > 5 \}$$

$$\square \# (\{A \mid A \subseteq \mathbb{N} \}) \neq \infty$$

b. (3 Punkte) (*)

Fülle die Lücke mit einem möglichst einfachen Ausdruck, so dass die Aussage gilt.

$$\forall A, B$$
. $\Leftrightarrow (A \setminus B = B \setminus A)$

c. (4 Punkte) (*)

Gib explizit an: $\mathcal{P}(\{0\} \times \{a, b\})$

Achtung: Für Zwischenschritte gibt es keine Punkte.

Matrikelnummer:	Name:	
V1000 01000 1100 1100 1	1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

Aufgabe 2: Abbildung

(17 Punkte)

a. (4 *Punkte*) (*) *Gib explizit an:* $f_1 : \mathbb{N} \to \mathbb{N}$ mit f_1 ist injektiv, surjektiv und *nicht* total.

b. (5 Punkte) (*) Beweise: f_1 ist surjektiv.

c. (8 Punkte) (**) Sei $\mathcal{A} = \{$ a, b, c $\}$ ein beliebiges Alphabet. Gib explizit an: eine Bijektion $\underline{f_2}: \{$ a $^{312*n} \mid n \in \mathbb{N}^+ \} \rightarrow \mathbb{N}$. Gib explizit an: eine Bijektion $\overline{f_2}: \mathbb{N} \rightarrow \{$ a $^{312*n} \mid n \in \mathbb{N}^+ \}$.

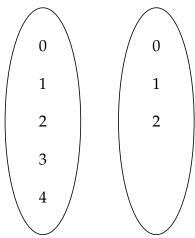
Aufgabe 3: Relation und Quotient

(30 Punkte)

a. Sei $f_3 \triangleq \{ (0, 0), (1, 2), (2, 1), (3, 2), (4, 0) \} : [0, 4] \rightarrow [0, 2].$ und sei $R_1 \triangleq \{ (x, y) \in [0, 4] \times [0, 4] \mid f_3(x) \leq f_3(y) \}.$

i) (2 Punkte) (*) *Visualisiere* f_3 .

[0, 4][0, 2] f_3



ii) (8 Punkte) (**) *Visualisiere* R_1 .

> 1 3

> > 2

0 4

iii) (5 Punkte) (**) Visualisiere eine kleinste Relation R_2 mit $R_1 = t(r(R_2))$.

1 3

2

0 4

Sortiere die Worte 3210, 3201, 320132 und 320123. \ll_{R_3} \ll_{R_3} \ll_{R_3} \ll_{R_3} \ll_{R_3} \ll_{R_3} \ll_{R_3} \ll_{R_3}

c. (6 Punkte) (**)

Kreuze genau die richtigen Aussagen an.

Achtung: Für falsch gesetzte Kreuze erhältst du Punktabzüge.

- □ Wenn $R : A \times A$ eine Äquivalenz ist, dann gibt es ein $f : A \rightarrow B$ mit Ker(f) = R. □ Sei nat : $\mathbb{N} \rightarrow \mathbb{N}/R$ mit $x \mapsto [x]_R$ die natürliche Abbildung.
- Wenn nat injektiv ist, dann ist $R = \Delta_{\mathbb{N}}$.

 Wenn $f_1, f_2 : A \to B$ totale Abbildungen sind mit $f_1(A) \subseteq f_2(A)$
- □ Wenn $f_1, f_2 : A \to B$ totale Abbildungen sind mit $f_1(A) \subseteq f_2(A)$, dann ist $Ker(f_1) \subseteq Ker(f_2)$.

Aufgabe 4: Struktur und Auswertung

(26 Punkte)

Betrachte die Signatur Σ_{Matrix} mit den Σ_{Matrix} -Algebren Mat_1 und Mat_2 . Das Variablensystem X und die Variablenbelegung α sind wie folgt definiert.

$$\begin{array}{ll} X \triangleq (X_s)_{s \in \{\text{ nat, matrix }\}} & \alpha: X \rightarrow Mat_1 \\ X_{\mathsf{nat}} \triangleq \{ \ \mathsf{n_1, n_2, n_3} \ \} & \alpha \triangleq (\alpha_s: X_s \rightarrow Mat_{1s})_{s \in \{\text{ nat, matrix }\}} \\ X_{\mathsf{matrix}} \triangleq \{ \ \mathsf{m_1, m_2} \ \} & \alpha_{\mathsf{nat}} \triangleq \{ \ (\ \mathsf{n_1, 6} \), \ (\ \mathsf{n_2, 4} \), \ (\ \mathsf{n_3, 17} \) \ \} \\ & \alpha_{\mathsf{matrix}} \triangleq \{ \ (\ \mathsf{m_1, \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}), \ (\ \mathsf{m_2, \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}) \ \} \end{array}$$

a. (3 Punkte) (*)

Kreuze genau die richtigen Aussagen an.

Achtung: Für falsch gesetzte Kreuze erhältst du Punktabzüge.

Für alle Signaturen $\Sigma = (S, O, ar)$ gilt: Wenn es keine Grundterme zur Sorte $s \in S$ gibt, dann gibt es keine Operatornamen zur Sorte s (also $O_s = \emptyset$). \square Wahr \square Falsch b. (4 Punkte) (*) Gib explizit an: die Menge von Grundtermen zur Sorte matrix. Hinweis: Gib $T_{\Sigma_{Matrix}, nat}$ nicht an.

 $T_{\Sigma_{Matrix}, \mathsf{matrix}} =$

c. (5 Punkte) (*)

Berechne: $xeval_{matrix}^{\alpha,Mat_1}(add(unit, make(succ(succ(z)), z, n_1, plus(z, succ(n_2)))))$ Hinweis: Gib mindestens drei bedeutsame Schritte an.

Matrikelnummer:	Name:	

d. (4 Punkte) (*)

 $\textit{Gib an: } \beta: X \rightarrow \textit{Mat}_1 \text{ und } t \in T_{\Sigma_{\textit{Matrix}}, \mathsf{nat}}, \text{ so dass}$

 $\operatorname{xeval}_{\mathsf{matrix}}^{\beta,\mathit{Mat}_1}(\operatorname{\mathsf{add}}(\operatorname{\mathsf{add}}(m_2,m_1),\operatorname{\mathsf{make}}(n_1,n_2,n_3,t))) = \begin{pmatrix} 12 & 13 \\ 17 & 4 \end{pmatrix}.$

e. (4 Punkte) (***)

Gib an: Eine Untersignatur Σ^{U}_{Matrix} von Σ_{Matrix} , so dass

• $\operatorname{eval}_{\operatorname{matrix}}^{Mat_1|_{\Sigma^U_{\operatorname{Matrix}}}}$ surjektiv ist und • die Anzahl an Operatornamen von $\Sigma^U_{\operatorname{Matrix}}$ minimal ist. Nenne dafür nur die aus $\Sigma_{\operatorname{Matrix}}$ entfernten Sorten und Operatornamen.

Matrikelnummer:	Name:
1 1 1000 1 1000 1 1 1 1 1 1 1 1 1 1 1 1	

f. (6 Punkte) (**)

Das Variablensystem Y ist wie folgt definiert.

$$\begin{split} Y &\triangleq (Y_s)_{s \in \{\text{ nat, matrix }\}} \\ Y_{\text{nat}} &\triangleq \{\text{ n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8 }\} \\ Y_{\text{matrix}} &\triangleq \varnothing \end{split}$$

Vervollständige die rechte Seite, so dass die Algebra Mat_2 die Gleichungen erfüllt. Verwende dazu auf der rechten Seite nur die Operatornamen z, succ und make sowie Variablen; in den letzten beiden Gleichungen dürfen zusätzlich e und plus verwendet werden.

Achtung: Bei dieser Teilaufgabe geht es um Mat₂; nicht um Mat₁.

e =
unit =
zero =
$plus(z,n_1) =$
$plus(succ(n_1),n_2) =$
succ(
$add(make(n_1,n_2,n_3,n_4),make(n_5,n_6,n_7,n_8)) =$

Σ_{Matrix}	Mat_1	Mat ₂
nat	$\mathit{Mat}_{1_{nat}} \triangleq \mathbb{N}$	$Mat_{2nat} \triangleq \mathbb{N}$
matrix	$Mat_{1_{matrix}} \triangleq \mathbb{N}^{2 \times 2}$	$Mat_{2matrix} \triangleq \mathbb{N}$
z:(nat)	z_{Mat_1} : $\mathit{Mat}_{1_{nat}}$	z_{Mat_2} : Mat_{2nat}
	$z_{Mat_1} riangleq 0$	$\mathbf{z}_{Mat_2} \triangleq 0$
e:(nat)	$e_{\mathit{Mat}_1} : \mathbb{N}$	e_{Mat_2} : \mathbb{N}
	$e_{Mat_1} riangleq 1$	$e_{\mathit{Mat}_2} \triangleq 1$
zero : (matrix)	$zero_{\mathit{Mat}_1} : \mathit{Mat}_{1_{matrix}}$	$zero_{\mathit{Mat}_2} : \mathit{Mat}_{2_{matrix}}$
	$zero_{Mat_1} riangleq egin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$	$zero_{\mathit{Mat}_2} \triangleq 0$
unit:(matrix)	$unit_{\mathit{Mat}_1}:\mathit{Mat}_{\mathit{1}_{matrix}}$	$unit_{\mathit{Mat}_2} : \mathit{Mat}_{2matrix}$
	$unit_{Mat_1} riangleq egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$	$unit_{\mathit{Mat}_2} riangleq 2$
<pre>succ:(nat, nat)</pre>	$succ_{\mathit{Mat}_1} : \mathit{Mat}_{1nat} \to \mathit{Mat}_{1nat}$	$succ_{\mathit{Mat}_2} : \mathit{Mat}_{2nat} \! o \! \mathit{Mat}_{2nat}$
	$n \mapsto n+1$	$n \mapsto n+1$
plus:(nat, nat, nat)	$plus_{\mathit{Mat}_1} : \mathit{Mat}_{1nat} imes \mathit{Mat}_{1nat} o \mathit{Mat}_{1nat}$	$plus_{\mathit{Mat}_2} : \mathit{Mat}_{2nat} imes \mathit{Mat}_{2nat} o \mathit{Mat}_{2nat}$
	$(n, m) \mapsto n + m$	$(n, m) \mapsto n + m$
make:(nat, nat, nat, nat, matrix)	$make_{\mathit{Mat}_1} : \mathbb{N} imes \mathbb{N} imes \mathbb{N} imes \mathbb{N} o \mathbb{N}^{2 imes 2}$	$make_{\mathit{Mat}_2} \; : \; \mathbb{N} imes \mathbb{N} imes \mathbb{N} imes \mathbb{N} o \mathbb{N}$
	$(n_1, n_2, n_3, n_4) \mapsto \begin{pmatrix} n_1 & n_2 \\ n_3 & n_4 \end{pmatrix}$ $add_{Mat_1} : \mathbb{N}^{2 \times 2} \times \mathbb{N}^{2 \times 2} \to \mathbb{N}^{2 \times 2}$	$(n_1, n_2, n_3, n_4) \mapsto n_1 + n_2 + n_3 + n_4$
add:(matrix, matrix, matrix)	$add_{\mathit{Mat}_1} : \mathring{\mathbb{N}}^{2 imes 2} imes \mathring{\mathbb{N}}^{2 imes 2} \! o\! \mathbb{N}^{2 imes 2}$	$add_{\mathit{Mat}_2} \; : \; \mathbb{N} imes \mathbb{N} o \mathbb{N}$
	$\left(\begin{pmatrix} n_1 & n_2 \\ n_3 & n_4 \end{pmatrix}, \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix} \right) \mapsto \begin{pmatrix} n_1 + m_1 & n_2 + m_2 \\ n_3 + m_3 & n_4 + m_4 \end{pmatrix}$	$(n_1, n_2) \mapsto n_1 + n_2$

Matrikelnummer:	Name:
-----------------	-------

Aufgabe 5: Induktion

(12 Punkte)

(**) Seien $f,g:\mathbb{N}^+ \to \mathbb{N}$ wie folgt definiert:

$$f(x) \triangleq \begin{cases} 1 & \text{, } x = 1 \\ 2 * f(x - 1) + 1 & \text{, } x > 1 \end{cases}$$
$$g(x) \triangleq 2^{x} - 1$$

Beweise: mittels Induktion f = g.

Matrikelnummer:	. Name:
Auf dieser Seite löse ich einen Teil der	Aufacha :
	Auigabe
Teilaufgabe:	