Technische Universität Berlin Fachgebiet Theoretische Elektrotechnik

Prüfungen in Theoretischer Elektrotechnik

Semester: SS 2011

Tag der Prüfung: 28.07.2011

1. Teil der schriftlichen Prüfung im Fach

TET I

Name:													
Vorname:													
MatrNr.:													
Studiengang:	117												

 \Uparrow bitte in Druckbuchstaben ausfüllen \Uparrow

Bitte beachten Sie auch die Hinweise auf der Rückseite!

Aufgabe	A1 (3)	A2 (3)	A3 (3)	A4 (3)	
Punkte					
Aufgabe	B1 (6)	B2 (6)	B3 (6)		ΣΡ
Punkte					

HINWEISE

(bitte vor Beginn sorgfältig lesen!)

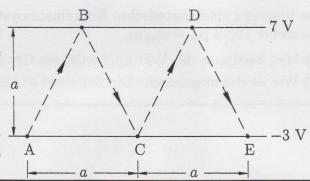
- a) Prüfen Sie, ob Ihr Klausurexemplar vollständig ist. Es muß aus insgesamt 5 Blättern bestehen (1 Deckblatt, 1 Blatt mit den Aufgaben A1 bis A4, jeweils 1 Blatt für die Aufgaben B1 bis B3). Falls Sie ein unvollständiges Klausurexemplar erhalten haben, lassen Sie sich bitte ein einwandfreies Exemplar aushändigen.
- b) Tragen Sie auf dem Deckblatt Ihren Vornamen, Namen und die Matrikelnummer ein.
- c) Verwenden Sie zur Lösung der Aufgaben nur den unter den Fragen freigelassenen Raum (bei den Fragen B1 bis B3 auch die Rückseite). Es werden beim Einsammeln keine Extrablätter angenommen!
- d) Achten Sie darauf, daß der Lösungsweg für den Korrektor nachvollziehbar ist.
- e) Es sind **keinerlei Hilfsmittel** außer einem Schreibstift gestattet. Verwenden Sie aber bitte **keinen Bleistift**.
- f) Die Teilnahme an dieser Klausur setzt eine vorherige **Anmeldung** voraus. Sollte diese nicht vorliegen, so kann die Klausur nicht benotet werden.

Bitte bestätigen Sie durch Ihre Unterschrift, daß Sie die Hinweise gelesen und verstanden haben.

Datum:			
Unterschr	ift:	 	

Aufgabe A1

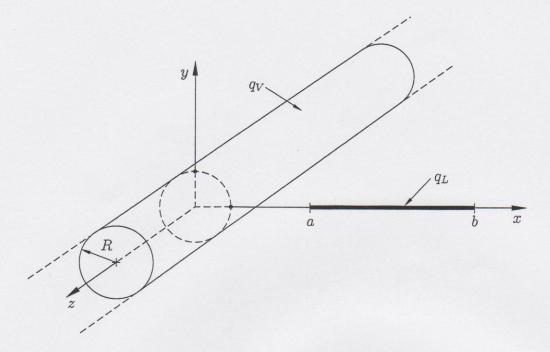
Die Gesamtladung Q sei homogen in einer Kugel mit dem Radius a verteilt.


- a) Wie groß ist die Raumladungsdichte q_V innerhalb der Kugel?
- b) Gib den Betrag der elektrischen Feldstärke und das Potential auf der Kugeloberfläche an.
- c) Wie lautet der Betrag der elektrischen Feldstärke im Mittelpunkt der Kugel?

Aufgabe A2

Zwei ebene, parallele Potentialflächen haben die Werte -3V bzw. +7V. Was ergibt ein Wegintegral der elektrischen Feldstärke

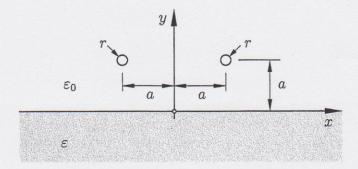
$$\int_{S} \mathbf{E} \cdot \, \mathrm{d}\mathbf{s}$$


entlang des im Bild eingezeichneten zickzackförmigen Weges ABCDE? Die Antwort ist zu begründen.

Aufgabe A3	
Leite die elektrische homogenen, leitenden	Feldstärke ${\bf E}$ her, die von einer punktförmigen Stromquelle I in Gesamtraum mit der Leitfähigkeit κ hervorgerufen wird.
ler Kugeloberflüche an	b) Gib den Betrag der elektrischen Feldstärke und das Potential auf (
Aufgabe A4	Aufgaha #2
	rtesischen Koordinatensystems befinde sich ein z-gerichteter magnet $z = z_{m0} e_z$.
	s Vektorpotential am Ort $x = a, y = a, z = 0.$
	etische Dipolmoment allgemein definiert?

Aufgabe B1

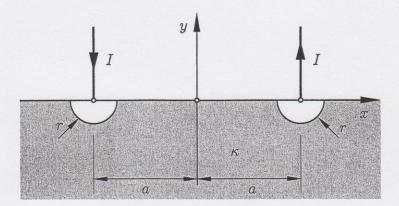
Auf der z-Achse befinde sich eine unendlich lange, kreiszylindrische, homogene Raumladung q_V mit dem Radius R, während auf der x-Achse im Bereich $a \le x \le b$ eine homogene Linienladung angeordnet ist.


Bestimme die Kraft auf die Linienladung.

Aufgabe BI

Auf der z-Achse befinde sich eine nnendlich lange, kreizzylindrische, homogene Raumladung $q_{\rm F}$ mit dem Radius Z. während auf der z-Achse im Bereich $a \le x \le b$ eine homogene Linkenladung angewellnet ist.

Aufgabe B2


Berechne die Kapazität pro Längeneinheit einer unendlich langen Doppelleitung über einem dielektrischen Halbraum.

Der Leiterradius rsoll dabei sehr klein sein, d.h. $r\ll a.$

Aufgabe B3

Zwei kleinen, ideal leitenden, halbkugelförmigen Erdern mit dem Radius $r\ll a$ wird an der Erdoberfläche der Gleichstrom I zu- bzw. abgeführt, siehe Skizze. Der Erdboden habe die Leitfähigkeit κ .

Bestimme die Stromdichte ${\bf J}$ in der Symmetrieebene zwischen den Erdern.