
Modern C++ for Embedded Systems
Part 1 – Compile-Time Device Models

Alexander Graf

January 25th, 2019

Alexander Graf — Modern C++ for Embedded Systems 1/27

Outline

1 Terms and Conditions :)

2 C-World Problems

3 C++ Solutions

4 Restraints in the Industry

5 Conclusions and Discussion

Alexander Graf — Modern C++ for Embedded Systems 2/27

Terms and Conditions :)
Defining ”Embedded”

interact with physical environment via sensors and
actuators

cost and resource constrained

talk assumes typical MCUs

< 1MB internal program memory
AVR, ARMv7M based (e.g. STM32, LPC5), etc.
bare-metal or small RTOS
or true kernel space programming on larger systems

Alexander Graf — Modern C++ for Embedded Systems 3/27

Terms and Conditions :)
Todays Focus

The Register Access Layer

Example Code for STM32F107

https://github.com/alibabashack/cxx-device-models

Alexander Graf — Modern C++ for Embedded Systems 4/27

Terms and Conditions :)
Todays Focus

The Register Access Layer

Example Code for STM32F107

https://github.com/alibabashack/cxx-device-models

Alexander Graf — Modern C++ for Embedded Systems 4/27

C-World Problems
Typical Register-Level Mistakes

Intention: Set Pin B5 high

ODR = Output Data Register

IDR = Input Data Register

Mask Confusion 1

1 #define GPIO_ODR_ODR_5 ((uint32_t)0x00000020)

2 #define GPIO_IDR_IDR_5 ((uint32_t)0x00000020)

3 #define GPIOB ((GPIO_t *) GPIOB_BASE)

4

5 GPIOB ->ODR |= GPIO_IDR_IDR_5;

Alexander Graf — Modern C++ for Embedded Systems 5/27

C-World Problems
Typical Register-Level Mistakes

Intention: Set Pin B5 high

ODR = Output Data Register

IDR = Input Data Register

Mask Confusion 1

1 #define GPIO_ODR_ODR_5 ((uint32_t)0x00000020)

2 #define GPIO_IDR_IDR_5 ((uint32_t)0x00000020)

3 #define GPIOB ((GPIO_t *) GPIOB_BASE)

4

5 GPIOB ->ODR |= GPIO_IDR_IDR_5;

Alexander Graf — Modern C++ for Embedded Systems 5/27

C-World Problems
Typical Register-Level Mistakes

Mask Confusion 1

1 #define GPIO_ODR_ODR_5 ((uint32_t)0x00000020)

2 #define GPIO_IDR_IDR_5 ((uint32_t)0x00000020)

3 #define GPIOB ((GPIO_t *) GPIOB_BASE)

4

5 GPIOB ->ODR |= GPIO_IDR IDR_5;

X compiles

X works (by accident)

7 but it is not correct!

7 And it is non-optimal (on STM32)

Alexander Graf — Modern C++ for Embedded Systems 6/27

C-World Problems
Typical Register-Level Mistakes

Intention: Enable clock for blocks SPI2 and GPIOB

RCC = Reset and clock control

APB = Advanced Peripheral Bus

Mask Confusion 2

1 RCC ->APB1ENR |=

2 (RCC_APB1ENR_SPI2EN | RCC_APB2ENR_GPIOBEN);

Alexander Graf — Modern C++ for Embedded Systems 7/27

C-World Problems
Typical Register-Level Mistakes

Intention: Enable clock for blocks SPI2 and GPIOB

RCC = Reset and clock control

APB = Advanced Peripheral Bus

Mask Confusion 2

1 RCC ->APB1ENR |=

2 (RCC_APB1ENR_SPI2EN | RCC_APB2ENR_GPIOBEN);

Alexander Graf — Modern C++ for Embedded Systems 7/27

C-World Problems
Typical Register-Level Mistakes

Mask Confusion 2

1 RCC ->APB1ENR |=

2 (RCC_APB1ENR_SPI2EN | RCC_APB2ENR_GPIOBEN);

X compiles

7 but does not work

7 may introduces side effects on existing behavior

7 may invoke undefined hardware behavior
(e.g. unexpected power consumption)

Alexander Graf — Modern C++ for Embedded Systems 8/27

C-World Problems
Resulting Issues

7 Creates lots of problems for future-Homer!

Alexander Graf — Modern C++ for Embedded Systems 9/27

C-World Problems
Resulting Issues

time wasted for

flashing to target
creating stimuli/test fixtures
lots of manual work

remaining hard-to-find non-functional bugs

undetected usage of undefined behavior

catastrophic if the chip die changes
YES, this happens!

Our aim:

The compiler shall detect illegal/non-optimal register usage!

Alexander Graf — Modern C++ for Embedded Systems 10/27

C-World Problems
Resulting Issues

time wasted for

flashing to target
creating stimuli/test fixtures
lots of manual work

remaining hard-to-find non-functional bugs

undetected usage of undefined behavior

catastrophic if the chip die changes
YES, this happens!

Our aim:

The compiler shall detect illegal/non-optimal register usage!

Alexander Graf — Modern C++ for Embedded Systems 10/27

C-World Problems
Reasons for Compiler Blindness

GPIO memory map definition

1 typedef struct

2 {

3 volatile uint32_t CRL;

4 volatile uint32_t CRH;

5 volatile uint32_t IDR;

6 volatile uint32_t ODR;

7 //...

8 } GPIO_TypeDef;

everything is of the same data type (integer)

thus, we can assign apples to oranges

Alexander Graf — Modern C++ for Embedded Systems 11/27

C-World Problems
Reasons for Compiler Blindness

GPIO Output Data Register bit definition

1 #define GPIO_ODR_ODR0 ((uint16_t)0x0001)

2 #define GPIO_ODR_ODR1 ((uint16_t)0x0002)

3 #define GPIO_ODR_ODR2 ((uint16_t)0x0004)

4 // ...

bits of the same field are unrelated language-wise

Alexander Graf — Modern C++ for Embedded Systems 12/27

C-World Problems
Reasons for Compiler Blindness

ODR, IDR: different bits for the same logical pin

1 #define GPIO_ODR_ODR_5 ((uint32_t)0x00000020)

2 #define GPIO_IDR_IDR_5 ((uint32_t)0x00000020)

no differentiation between

logical and physical structures
mechanism and policy1

1see Linux Device Drivers – Corbet et al.

Alexander Graf — Modern C++ for Embedded Systems 13/27

C-World Problems
Reasons for Compiler Blindness

mechanism

the intention of an action

policy (Verfahrensweise)

how the action is achieved

no differentiation between

logical and physical structures
mechanism and policy

self-documenting code

Alexander Graf — Modern C++ for Embedded Systems 14/27

C-World Problems
Lets Discuss

What can we do to engage the compiler?

one type per register

cluster related bits

separate mechanism from policy

check invalid value combinations

Alexander Graf — Modern C++ for Embedded Systems 15/27

C-World Problems
The True Challenge

enum and typedef are unsafe: implicit conversions

bit fields also suffer from implicit conversions

no mechanism to convert types (except casting)

non-trivial value checks must be performed at runtime

Conclusion

The C type system is to weak for our purpose.

Alexander Graf — Modern C++ for Embedded Systems 16/27

C-World Problems
The True Challenge

enum and typedef are unsafe: implicit conversions

bit fields also suffer from implicit conversions

no mechanism to convert types (except casting)

non-trivial value checks must be performed at runtime

Conclusion

The C type system is to weak for our purpose.

Alexander Graf — Modern C++ for Embedded Systems 16/27

C++ Solutions
New Tools

enum class (Scoped Enumerations)

define types without default operators or conversions

user-defined operators

define exactly the operations you need

constexpr – running code at compile-time

static assert – checking conditions at compile-time

Alexander Graf — Modern C++ for Embedded Systems 17/27

C++ Solutions
Sorting Apples and Oranges

GPIO registers with individual types

1 struct GpioRegs {

2 PortConfigLowReg CRL;

3 PortConfigHighReg CRH;

4 InputDataReg IDR;

5 OutputDataReg ODR;

6 SetResetMaskReg BSRR;

7 // ...

8 };

Alexander Graf — Modern C++ for Embedded Systems 18/27

C++ Solutions
Separating Mechanism and Policy

1 class OutputDataReg {

2 public:

3

4 OutputDataReg& operator =(PinId pid) {

5 rawReg = (1<<static_cast <size_t > (pid));

6 return *this;

7 }

8

9 OutputDataReg& operator =(PinMask pm) {

10 rawReg = static_cast <uint32_t > (pm);

11 return *this;

12 }

13

14 private:

15 volatile uint32_t rawReg;

16 };

Alexander Graf — Modern C++ for Embedded Systems 19/27

C++ Solutions
Defining Value Types

1 enum class PinId {

2 Px0 , Px1 , Px2 , Px3 , Px4 , Px5 , Px6 , Px7 , Px8 ,

3 Px9 , Px10 , Px11 , Px12 , Px13 , Px14 , Px15 ,

4 };

5

6 enum class PinMask: uint32_t {

7 // PinMasks are created indirectly from

PinId using logic operators

8 };

9

10 gpioERegs ->ODR = PinId::Px2;

11 gpioERegs ->ODR = (PinId::Px2 | PinId::Px3);

Alexander Graf — Modern C++ for Embedded Systems 20/27

C++ Solutions
Converting Value Types

1 constexpr PinMask operator |(PinId l, PinId r) {

2 return static_cast <PinMask > (

3 (1 << static_cast <size_t > (l)) |

4 (1 << static_cast <size_t > (r))

5);

6 }

7

8 constexpr PinMask operator |(PinId l, PinMask r)

{

9 return static_cast <PinMask > (

10 (1 << static_cast <size_t > (l)) |

11 static_cast <size_t > (r)

12);

13 }

Alexander Graf — Modern C++ for Embedded Systems 21/27

C++ Solutions
Checking Value Ranges

1 template <PinId p, PinMode m, PinConfig c>

2 constexpr PinSetupHigh createPinSetupHigh () {

3 static_assert(

4 static_cast <size_t > (p) > 7,

5 "selected PinId invalid");

6 // ...

7 }

8

9 gpioERegs ->CRL = createPinSetupLow <

10 PinId::Px2 ,

11 PinMode :: Output2Mhz ,

12 PinConfig :: GeneralPushPullOutput >();

Alexander Graf — Modern C++ for Embedded Systems 22/27

C++ Solutions
What did we gain?

Compiler can throw errors for

X mixed-up bit masks
X illegal value ranges
X suboptimal register access

X impossible to use reserved/undefined behavior

X zero runtime overhead

7 Need to invest in a lot of new code

Alexander Graf — Modern C++ for Embedded Systems 23/27

Restraints in the Industry
C as Dominating Language

70% of Embedded Software is written in C 2

23% is written in C++

Industry is havily focused to support C

everything else is optional

primary solution: building on top of C

2Barr Group – Embedded Systems Safety & Security Survey 2018

Alexander Graf — Modern C++ for Embedded Systems 24/27

Restraints in the Industry
Building on Top of C

Peripheral Library with assertions (e.g. ST)

assertions only thrown at runtime
runtime overhead

Automatic Code Generation (e.g. ST CubeMx)

vendor-dependent tools in build
integration of automatic and manual code
support stops at the chip boundary

Alexander Graf — Modern C++ for Embedded Systems 25/27

Restraints in the Industry
CubeMx

Alexander Graf — Modern C++ for Embedded Systems 26/27

Conclusions and Discussion

C++

is also suiteable for lowest code levels
can do powerfull things without run time overhead
can offer advanced diagnostics at compile time

The industry will likely not support this approach.

Lets make it free software then!

Alexander Graf — Modern C++ for Embedded Systems 27/27

Conclusions and Discussion

Q/A

possible future talks:

Test-Driven Development for Embedded Systems
Using Smart Pointers with Memory Pools
Device Driver Architecture

Alexander Graf — Modern C++ for Embedded Systems 28/27

Conclusions and Discussion

Q/A

possible future talks:

Test-Driven Development for Embedded Systems
Using Smart Pointers with Memory Pools
Device Driver Architecture

Alexander Graf — Modern C++ for Embedded Systems 28/27

	Terms and Conditions :)
	C-World Problems
	C++ Solutions
	Restraints in the Industry
	Conclusions and Discussion

