Modern C++ for Embedded Systems

Part 1 — Compile-Time Device Models

Alexander Graf

January 25th, 2019

Alexander Graf — Modern C++ for Embedded Systems 1/27

Outline

Terms and Conditions :)
C-World Problems

C++ Solutions
Restraints in the Industry

Conclusions and Discussion

Alexander Graf — Modern C++ for Embedded Systems 2/27

Terms and Conditions :)
Defining " Embedded”

m interact with physical environment via sensors and
actuators

m cost and resource constrained

m talk assumes typical MCUs

m < 1MB internal program memory

m AVR, ARMV7M based (e.g. STM32, LPC5), etc.

m bare-metal or small RTOS

m or true kernel space programming on larger systems

Alexander Graf — Modern C++ for Embedded Systems 3/27

Terms and Conditions :)
Todays Focus

m The Register Access Layer

Alexander Graf — Modern C++ for Embedded Systems 4/27

Terms and Conditions :)

Todays Focus

m The Register Access Layer

Example Code for STM32F107

https://github.com/alibabashack/cxx-device-models

Alexander Graf — Modern C++ for Embedded Systems 4/27

C-World Problems

Typical Register-Level Mistakes

m Intention: Set Pin B5 high
m ODR = Output Data Register
m IDR = Input Data Register

Alexander Graf — Modern C++ for Embedded Systems 5/27

C-World Problems

Typical Register-Level Mistakes

m Intention: Set Pin B5 high
m ODR = Output Data Register
m IDR = Input Data Register

Mask Confusion 1

#define GPIO_ODR_ODR_5 ((uint32_t)0x00000020)

1

> #define GPIO_IDR_IDR_5 ((uint32_t)0x00000020)
3 #define GPIOB ((GPIO_t *) GPIOB_BASE)
4

5 GPIOB->0DR |= GPIO_IDR_IDR_5;

Alexander Graf — Modern C++ for Embedded Systems 5/27

C-World Problems

Typical Register-Level Mistakes

Mask Confusion 1

1 #define GPIO_ODR_ODR_5 ((uint32_t)0x00000020)
> #define GPIO_IDR_IDR_5 ((uint32_t)0x00000020)
3 #define GPIOB ((GPIO_t *) GPIOB_BASE)
4
5

GPIOB->0DR |= GPIO_IDR_IDR_5;

v' compiles

v" works (by accident)

X but it is not correct!

X And it is non-optimal (on STM32)

Alexander Graf — Modern C++ for Embedded Systems 6/27

C-World Problems

Typical Register-Level Mistakes

m Intention: Enable clock for blocks SPI2 and GPIOB
m RCC = Reset and clock control
m APB = Advanced Peripheral Bus

Alexander Graf — Modern C++ for Embedded Systems 7/27

C-World Problems

Typical Register-Level Mistakes

m Intention: Enable clock for blocks SPI2 and GPIOB
m RCC = Reset and clock control
m APB = Advanced Peripheral Bus

Mask Confusion 2

1 RCC->APB1ENR |=
2 (RCC_APB1ENR_SPI2EN | RCC_APB2ENR_GPIOBEN) ;

Alexander Graf — Modern C++ for Embedded Systems 7/27

C-World Problems

Typical Register-Level Mistakes

Mask Confusion 2

1 RCC->APB1ENR |=
2 (RCC_APB1ENR_SPI2EN | RCC_APB2ENR_GPIOBEN) ;

v' compiles
X but does not work

X may introduces side effects on existing behavior

X may invoke undefined hardware behavior
(e.g. unexpected power consumption)

Alexander Graf — Modern C++ for Embedded Systems 8/27

C-World Problems

Resulting Issues
e L N

Creates lots of problems for future-Homer!

C-World Problems

Resulting Issues

m time wasted for

m flashing to target

m creating stimuli/test fixtures

m lots of manual work
m remaining hard-to-find non-functional bugs
m undetected usage of undefined behavior

m catastrophic if the chip die changes
m YES, this happens!

Alexander Graf — Modern C++ for Embedded Systems 10/27

C-World Problems

Resulting Issues

m time wasted for

m flashing to target
m creating stimuli/test fixtures
m lots of manual work

m remaining hard-to-find non-functional bugs
m undetected usage of undefined behavior

m catastrophic if the chip die changes
m YES, this happens!

The compiler shall detect illegal /non-optimal register usage! I

Alexander Graf — Modern C++ for Embedded Systems 10/27

GPIO memory map definition

1 typedef struct

2 {
3
4

5
6

~

C-World Problems

Reasons for Compiler Blindness

volatile uint32_t CRL;
volatile uint32_t CRH;
volatile uint32_t IDR;
volatile uint32_t O0ODR;
// ...

GPIO_TypeDef;

m everything is of the same data type (integer)

m thus, we can assign apples to oranges

Alexander Graf — Modern C++ for Embedded Systems 11/27

C-World Problems

Reasons for Compiler Blindness

GPIO Output Data Register bit definition

#define GPIO_ODR_ODRO ((uint16_t)0x0001)
#define GPIO_ODR_ODR1 ((uint16_t)0x0002)
#define GPIO_ODR_ODR2 ((uint16_t)0x0004)
//

2w N e

m bits of the same field are unrelated language-wise

Alexander Graf — Modern C++ for Embedded Systems

12/27

C-World Problems

Reasons for Compiler Blindness

ODR, IDR: different bits for the same logical pin

1 #define GPIO_ODR_ODR_5 ((uint32_t)0x00000020)
> #define GPIO_IDR_IDR_5 ((uint32_t)0x00000020)

m no differentiation between

m logical and physical structures
m mechanism and policy?

!see Linux Device Drivers — Corbet et al.
Alexander Graf — Modern C++ for Embedded Systems 13/27

C-World Problems

Reasons for Compiler Blindness

the intention of an action I

policy (Verfahrensweise)

how the action is achieved

m no differentiation between

m logical and physical structures
m mechanism and policy

m self-documenting code

Alexander Graf — Modern C++ for Embedded Systems 14/27

C-World Problems

Lets Discuss

What can we do to engage the compiler? J

m one type per register
m cluster related bits
m separate mechanism from policy

m check invalid value combinations

Alexander Graf — Modern C++ for Embedded Systems 15/27

C-World Problems

The True Challenge

enum and typedef are unsafe: implicit conversions
bit fields also suffer from implicit conversions
no mechanism to convert types (except casting)

non-trivial value checks must be performed at runtime

Alexander Graf — Modern C++ for Embedded Systems 16/27

C-World Problems

The True Challenge

enum and typedef are unsafe: implicit conversions
bit fields also suffer from implicit conversions

m
m
m no mechanism to convert types (except casting)
m

non-trivial value checks must be performed at runtime

The C type system is to weak for our purpose. l

Alexander Graf — Modern C++ for Embedded Systems 16/27

C++ Solutions

New Tools

enum class (Scoped Enumerations)

m define types without default operators or conversions
m user-defined operators
m define exactly the operations you need

constexpr — running code at compile-time

static_assert — checking conditions at compile-time

Alexander Graf — Modern C++ for Embedded Systems 17/27

C++ Solutions

Sorting Apples and Oranges

GPIO registers with individual types

1 struct GpioRegs {

2 PortConfiglLowReg CRL;
3 PortConfigHighReg CRH;
4 InputDataReg IDR;

5 OutputDataReg ODR;

6 SetResetMaskReg BSRR;
7 //

8 };

Alexander Graf — Modern C++ for Embedded Systems 18/27

C++ Solutions

Separating Mechanism and Policy

1 class OutputDataReg {

2 public:

3

4 OutputDataReg& operator=(PinId pid) {

5 rawReg = (1<<static_cast<size_t> (pid));
6 return *xthis;

7 }

8

9 OutputDataReg& operator=(PinMask pm) {
10 rawReg = static_cast<uint32_t> (pm) ;
11 return *this;

12 }

13

14 private:

15 volatile uint32_t rawReg;

16 F;

Alexander Graf — Modern C++ for Embedded Systems 19/27

C++ Solutions

Defining Value Types

1 enum class PinId {

2 Px0, Px1, Px2, Px3, Px4, Pxb, Px6, Px7, Px8,
3 Px9, Px10, Px11, Px12, Px13, Px14, Px15,
4 };

6 enum class PinMask: uint32_t {
7 // PinMasks are created indirectly from
PinId using logic operators

8 F;

=
o

gpioERegs ->0DR = PinId::Px2;
1 gpioERegs ->0DR (PinId::Px2 | PinId::Px3);

-

Alexander Graf — Modern C++ for Embedded Systems 20/27

C++ Solutions

Converting Value Types

1 constexpr PinMask operator|(PinId 1, PinId r) {

2 return static_cast<PinMask> (

3 (1 << static_cast<size_t> (1)) |

4 (1 << static_cast<size_t> (r))

5)3

6

7

s constexpr PinMask operator|(PinId 1, PinMask r)
{

9 return static_cast<PinMask> (

10 (1 << static_cast<size_t> (1)) |

1 static_cast<size_t> (r)

12)

13}

Alexander Graf — Modern C++ for Embedded Systems 21/27

C++ Solutions

Checking Value Ranges

1 template<PinId p, PinMode m, PinConfig c>
> constexpr PinSetupHigh createPinSetupHigh() {

3 static_assert(

4 static_cast<size_t> (p) > 7,

5 "selected PinId invalid");

6 //

7}

8

9 gpioERegs ->CRL = createPinSetuplow<

10 PinId::Px2,

11 PinMode ::Output2Mhz,

12 PinConfig::GeneralPushPullOutput >() ;

Alexander Graf — Modern C++ for Embedded Systems 22/27

C++ Solutions

What did we gain?

m Compiler can throw errors for

v" mixed-up bit masks
v illegal value ranges
v suboptimal register access

v/ impossible to use reserved/undefined behavior
v’ zero runtime overhead

X Need to invest in a lot of new code

Alexander Graf — Modern C++ for Embedded Systems 23/27

Restraints in the Industry

C as Dominating Language

70% of Embedded Software is written in C 2
23% is written in C4++
Industry is havily focused to support C

everything else is optional

primary solution: building on top of C

2Barr Group — Embedded Systems Safety & Security-Survey 2018
Alexander Graf — Modern C++ for Embedded Systems 24 /27

Restraints in the Industry
Building on Top of C

m Peripheral Library with assertions (e.g. ST)
m assertions only thrown at runtime
® runtime overhead
m Automatic Code Generation (e.g. ST CubeMXx)

m vendor-dependent tools in build
m integration of automatic and manual code
B support stops at the chip boundary

Alexander Graf — Modern C++ for Embedded Systems 25/27

Restraints in the Industry
CubeMx

Clack Mux

Ve[igal HsERT
rea| U isE NP R
5ne
®
- PApe—
ey S
EEEEE—— | 8 To FLITFCLK (MHz) -
i) Ta Cartex System timer (HF
HSIRC System Clock Muz
P ek
ek | ae pesier
e reva
: B [T T 76| aees pershers docks s

xz APE1 Timer clacks (MHa)

J—
I
R
i
- —
st ke
| TEGIETS I [
et~ it
=) e eIzl Teroa 2
oo
R
i PLLELK
et
-
o
=
=
o
P

Alexander Graf — Modern C++ for Embedded Systems 26/27

Conclusions and Discussion

m C++
m is also suiteable for lowest code levels
m can do powerfull things without run time overhead
m can offer advanced diagnostics at compile time

m The industry will likely not support this approach.

m Lets make it free software then!

Alexander Graf — Modern C++ for Embedded Systems 27/27

Conclusions and Discussion

= Q/A

Alexander Graf — Modern C++ for Embedded Systems 28/27

Conclusions and Discussion

= Q/A
m possible future talks:

m Test-Driven Development for Embedded Systems
m Using Smart Pointers with Memory Pools
m Device Driver Architecture

Alexander Graf — Modern C++ for Embedded Systems 28/27

	Terms and Conditions :)
	C-World Problems
	C++ Solutions
	Restraints in the Industry
	Conclusions and Discussion

