
Containers
Docker and 12 Factor Apps

Who we are

Luk Burchard

Computer Science Student
Software Engineer @ Loodse

twitter.com/lukburchard
github.com/realfake

Matthias Loibl

Computer Science Student
Software Engineer @ Loodse

twitter.com/metalmatze
github.com/metalmatze

Who are you?

● Developer?
● SysAdmin/Ops?
● Data Science?
● ...

Who are you?

● Who knows about Docker?
● Who knows about Kubernetes?
● Who uses Docker for Development?
● Who uses Docker in Production?

Who tried to use Docker, but couldn't do it?

Deployment

How do you deploy your apps?

Deployment

How do you deploy your apps?

Do you like SSH?

Deployment

How do you deploy your apps?

Do you like SSH?
Do you like SSH on 5 Servers?

Deployment

How do you deploy your apps?

Do you like SSH?
Do you like SSH on 5 Servers?
Do you like SSH on 100 Servers?

The Challenge

The Matrix from Hell

Cargo Transport Pre-1960

Another Matrix from Hell

Solution: Shipping Container

Docker: Container for shipping Software

Eliminate the Matrix from Hell

What is a Container?

chroot

● chroot = change root
● Extract a filesystem to /mnt
● Change the root to /mnt

○ Uses the same (Linux) Kernel as before

Installing or repairing a Linux System with chroot

cgroups & namespaces

cgroups

limit & isolate the resource usage

Example:
Kill process using more than 256MB memory

namespaces

isolate and virtualize system resources of a
collection of processes

● Mount
● Process ID
● Network
● User ID
● cgroups

LXC (Linux Containers)

● Operating-system-level virtualization
● Run multiple isolated Linux systems on a single Linux kernel

● Combines cgroups and namespaces to run Linux Containers

Containers vs. VMs

Docker

What is this Docker?

● Written in Go
● Released on March 13th, 2013
● Client-Server:

○ Docker Engine (daemon)
○ Docker Client, CLI

● Ready for production use
● Used LCX to run Containers

○ Uses cgroup, namespaces and OverlayFS

● Use their own libcontainer implementation

What does Docker provide?

● Run in the same environment
Run in a lightweight environment

● Run in a sandboxed environment
● Pull images with all its dependencies

OCI (Open Container Initiative)

● Standard for container formats and runtimes
○ Standardizes how images are unpacked on the filesystem
○ Standardizes how containers are run from images

● Under auspices of the Linux Foundation
● docker, rkt and others now run the same specification
● runc is an OCI implementation

Install Docker

● Docker on Linux, ask your package manager
● Docker for Mac
● Docker for Windows

Run $ docker version

Use our GCP Codes

Docker Group on Linux

Add the Docker group
$ sudo groupadd docker

Add yourself to the group
$ sudo gpasswd -a $USER docker

Restart the Docker daemon
$ sudo systemctl restart docker

$ docker ps # run docker without sudo

Docker Client

docker build Build an image from a Dockerfile

docker exec Run a command in a running container

docker inspect Return low-level information on Docker objects

docker kill Kill one or more running containers

docker logs Fetch the logs of a container

docker pull Pull an image or a repository from a registry

docker push Push an image or a repository to a registry

docker rm Remove one or more images

docker run Run a command in a new container

docker stop Stop one or more running containers

docker tag Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE

Excerpt of most important docker commands

OverlayFS

Image

OverlayFS:
each layer ‘overlays’
the lower layer

Image

● CMD ["/bin/bash"]

● mkdir -p /run/systemd && echo '...

● sed -i 's/^#\s*\(deb.*universe\...

● ADD file:280a445783f309c..

Container

The Container
(a running program)

The Image
(a blueprint for a container)

Container Registries

● hub.docker.com
○ Docker's official Registry

● quay.io
○ Public Registry by CoreOS

● cloud.google.com/container-registry
○ Shorter: gcr.io/google_containers/pause-amd64
○ Often used in combination with Kubernetes

● Host your own private Registry

https://hub.docker.com/
https://quay.io/
https://cloud.google.com/container-registry/

Container Registry Commands

Use docker CLI to authenticate

$ docker login
$ docker logout

Login to a private registry
$ docker login registry.example.com

Container Architecture

Run a Container

$ docker run alpine echo 'hello world'
$ docker ps

What did just happen?

● Pulled alpine image from the registry
● Created a new container
● Allocated a filesystem and mounts a read-write layer
● Allocated a network/bridge interface
● Sets up an IP address
● Executes a process that you specify (/bin/bash)
● Captures and provides application output

Run a long-lived Container

$ docker run --name hw alpine /bin/sh -c "while true; do echo hello world; sleep 1; done"
$ docker ps
$ docker logs (-f) hw

Ctrl+C the container
$ docker ps
$ docker ps -a

Run nginx in a Container

Ports
$ docker run --rm -p 8080:80 nginx
$ docker run --rm -p 8080:80 nginx:1.13
$ docker run -d --name nginx -p 8080:80 nginx

Volumes
$ docker run --rm -p 8080:80 -v /tmp/nginx:/usr/share/nginx/html:ro nginx

Dockerfile

● Build steps to create an image
● Invoke with “$docker build .”
● Output is and image
● Cache image layers

FROM alpine:latest

ADD hostsrc /containerdest
WORKDIR /pwdofcontainerstart

CMD ./main

Docker: "don't"s

● Don't store data in containers
○ All data will be lost

● Don't create large images
○ Use alpine

● Don't use only the latest tag
○ How would you rollback?

● Don't run more than one process in a single container

12-Factor Apps
https://12factor.net

https://12factor.net/

12 Factors

1. Codebase
Use something like git

2. Dependencies
Use dep, pip, gem, npm etc…

3. Configuration
Use EnvVars, not config files

4. Backing services
Independent of depended services
Example: DB, MySQL or RDS

5. Build, release, run
Build a immutable release, use CI/CD

6. Processes
Apps are just a stateless process
Containers ;-)

12 Factors

7. Port binding
Expose Apps via Ports
Example: HTTP:80, Postgres:5432

8. Concurrency
Keep horizontal scaling in mind

9. Disposability
Fast start time, terminate on SIGTERM
Container send SIGTERM ;-)

10. Dev/prod parity
Deploy often, DevOps, run same
containers in dev

11. Logs
Streams, not files. Write to stdout

12. Admin processes
Run admin tasks as one-off processes
Example: Run script to migrate DB

12 Commandments ...

I. Codebase
One codebase tracked in revision control, many deploys

II. Dependencies
Explicitly declare and isolate dependencies

III. Config
Store config in the environment

IV. Backing services
Treat backing services as attached resources

V. Build, release, run
Strictly separate build and run stages

VI. Processes
Execute the app as one or more stateless processes

VII. Port binding
Export services via port binding

VIII. Concurrency
Scale out via the process model

IX. Disposability
Maximize robustness with fast startup and graceful shutdown

X. Dev/prod parity
Keep development, staging, and production as similar as

possible

XI. Logs
Treat logs as event streams

XII. Admin processes
Run admin/management tasks as one-off processes

https://12factor.net/codebase
https://12factor.net/dependencies
https://12factor.net/config
https://12factor.net/backing-services
https://12factor.net/build-release-run
https://12factor.net/processes
https://12factor.net/port-binding
https://12factor.net/concurrency
https://12factor.net/disposability
https://12factor.net/dev-prod-parity
https://12factor.net/logs
https://12factor.net/admin-processes

12 Factor - Implications

● Portability
● Deployability
● Scalability
● Immutability

Shall we?

Let’s begin!

$ curl -L
https://storage.googleapis.com/cotbat/cotbat.zip >
cotbat.zip

unzip cotbat.zip

https://storage.googleapis.com/cotbat/cotbat.zip

github.com/realfake/cotlaader
github.com/realfake/cotbat

Container Registry

You can host your own!
It's just a docker container with BasicAuth

Run a registry locally
$ docker run -d -p 5000:5000 --name registry registry:2

Use your images
$ docker tag project:1.2.3 registry.example.com/project:1.2.3
$ docker push registry.example.com/project:1.2.3

