Containers

Docker and 12 Factor Apps

Who we are

Luk Burchard Matthias Loibl
Computer Science Student Computer Science Student
Software Engineer @ Loodse Software Engineer @ Loodse

github.com/realfake github.com/metalmatze

Who are you?

Developer?
SysAdmin/Ops?
Data Science?

Who are you?

Who tried to use Docker, but couldn't do it?

Who knows about Docker?

Who knows about Kubernetes?
Who uses Docker for Development?
Who uses Docker in Production?

Deployment

How do you deploy your apps?

Deployment

How do you deploy your apps?

Do you like SSH?

Deployment

How do you deploy your apps?

Do you like SSH?
Do you like SSH on 5 Servers?

Deployment

How do you deploy your apps?

Do you like SSH?
Do you like SSH on 5 Servers?
Do you like SSH on 100 Servers?

The Challenge

” ®® UserDB s
g o Static website postgresal + pgvs + 3 L1 o , 3 8
3 oe @ Queue Analytics DB T _ 2
n . L 1] _ _ 5 =
“5 nainx 1.5 + modsecurity + openss| + bootstrap 2 Redis + redis-sentinel hadoop + hive + thrift + CpenJDK - 5" g

(7
<z @ 8 o
S [L g 83
= ‘® Background workers 1 S IEe £ 2
=] o _ _ Ruby + Rails + sass + Unicorn - %
=5 Python 3.0 + celery + pyredis + libcurl + fimpeg + libopency + nodejs + .a‘ . o
S phantomjs .‘-’“‘. API endeInt w

Python 2.7 + Flask + pyredis + celery + psycopg + postgresql-client

Production Cluster

! Development VM Public Cloud

a3 QA server

gl

vy
t
5
3 £
T o
:ah
>
< £
Q

Disaster recovery

Multiplicity of

Customer Data Center t Contributor’s laptop ﬂ
y

Production Servers

v N
3 o
o =3
2—
53
<a
o

=
o

The Matrix from Hell

.@‘ Static website
oe Web frontend
L L]
&
b | Background workers
[]
L]
[]
[]
[Analytics DB
@
.@.
(]]

Single Prod Onsite Public Cloud Contributor’s Customer
laptop Servers

Development
VM G Scaver Server Cluster

Do | worry about Can | transport quickly
how goods interact and smoothly
(e.g. coffee beans (e.g. from boat to train
next to spices) to truck)

Sunojs/3unJodsuerny
spoopo jo fApljdiniAl 10} spoyiaw
jo Apiidninia

Cargo Transport Pre-1960

Another Matrix from Hell

Solution: Shipping Container

3 70 O
E S £ O
3 J -
2 A 9B g
= o = 8_ g
- . 2 wn g n 2
i A standard container that is E- o 3 o
E_ loaded with virtually any g_ oo g
% goods, and stays sealed until = ﬁ =
s it reaches final delivery.

...in between, can be loaded and
unloaded, stacked, transported
efficiently over long distances,
and transferred from one mode
of transport to another

Multiplicity of
methods for
transporting/storing
(3onu1 o1 uresy
0} 1k0q Wolj ‘§'9)
Alyjoows pue Apjainb
uodsuely [uedy

Docker: Container for shipping Software

~ . O
8 - - &

£ e Static website %® UserDB g¢ Web frontend :é. Queue ¢p Analytics DB o 9
1)
5 tEE
= 0O 2 0o
0 T o0

= =" a
= Q = 18]
= : o o~ 32
= An engine that enables any = S—
% payload to be encapsulated ~ S
s as a lightweight, portable, @

self-sufficient container...
E I EEEEEEEEEEEEEENEEEEEEEEN IEEEEE EEEEE N EEEEEEEEEEEEEEESR

...that can be manipulated using "

5] standard operations and run 3
zee consistently on virtually any S
o z E hardware platform 55
27T o ==
° . — — e g

Development QA server Customer Data Public Cloud Production Contributor’s =

VM Center Cluster laptop

Eliminate the Matrix from Hell

& m
.“. Static website - | . . .
oL Web frontend .
@@
[]
EY] Background workers
® |
d - I
e 1
@ Analytics DB .
=) |
v PP
L

Single Prod Onsite - Contributor’'s Customer
Public Cloud
Server Cluster laptop Servers

i

Development

VM QA Server

i

What is a Container?

chroot

e chroot = change root
e Extract a filesystem to /mnt

e Change therootto /mnt
o Uses the same (Linux) Kernel as before

Installing or repairing a Linux System with chroot

cgroups & namespaces

cgroups namespaces

limit & isolate the resource usage isolate and virtualize system resources of a
collection of processes

e Mount
Example: e Process ID
Kill process using more than 256MB memory e Network

e UserlD

e cgroups

LXC (Linux Containers)

e Operating-system-level virtualization
e Run multiple isolated Linux systems on a single Linux kernel

e Combines cgroups and namespaces to run Linux Containers

Containers vs. VMs

Container <

Hypervisaor (Type 2)
Host 0S5

Containers are isolated,
but share 0S and, where
appropriate, bins/libraries

Host 0OS

Server

Docker

What is this Docker?

e Writtenin Go
e Released on March 13th, 2013

e Client-Server:

o Docker Engine (daemon)
o Docker Client, CLI

e Ready for production use
e Used LCX to run Containers
o Uses cgroup, namespaces and OverlayFS
e Use their own libcontainer implementation

What does Docker provide?

e Run in the same environment
Run in a lightweight environment
e Runin a sandboxed environment
e Pull images with all its dependencies

OCI (Open Container Initiative)

e Standard for container formats and runtimes

o Standardizes how images are unpacked on the filesystem
o Standardizes how containers are run from images

e Under auspices of the Linux Foundation
e docker, rkt and others now run the same specification
e runc is an OCl implementation

Install Docker

e Docker on Linux, ask your package manager
e Docker for Mac
e Docker for Windows

Run S docker version

Use our GCP Codes

Docker Group on Linux

S sudo groupadd docker

$ sudo gpasswd -a SUSER docker

S sudo systemctl restart docker

S docker ps

Docker Client

Excerpt of most important docker commands

docker build Build an image from a Dockerfile

docker exec Run a command in a running container

docker inspect Return low-level information on Docker objects
docker kill Kill one or more running containers

docker logs Fetch the logs of a container

docker pull Pull an image or a repository from a registry
docker push Push an image or a repository to a registry
docker rm Remove one or more images

docker run Run a command in a new container

docker stop Stop one or more running containers

docker tag Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE

OverlayFS

Overlay

Lower

91e54dfb1179

d74508fb6632 1.895 KB

€22013c84729 194.5 KB

d3alf33e8ab5a 188.1 MB

ubuntu:15.04

Image

OverlayFS:
each layer ‘overlays’
the lower layer

CMD ["/bin/bash"]

mkdir -p /run/systemd && echo ...

sed -i 's/M\s*\(deb.*universe\...

ADD file:280a445783f309c..

91e54dfb1179

d74508fb6632

c22013c84729

d3alf33e8a5a

ubuntu:15.04

1.895 KB

194.5 KB

188.1 MB

Image

Container

The Container
(a running program)

E_ Thin R/W layer i«'— Container layer
¥ t t t t
' ! } ']

91e54dfb1179
The Image

(a blueprint for a container)
d74508fb6632 1.895 KB

ﬂ > |mage layers (R/0)
c22013c84729 194.5 KB

d3alf33e8a5a 188.1 MB

ubuntu:15.04

Container
(based on ubuntu:15.04 image)

Container Registries

e hub.docker.com
o Docker's official Registry
e guay.io
o Public Registry by Core0S
e cloud.google.com/container-registry

o Shorter: gcr.io/google_containers/pause-amd64
o Often used in combination with Kubernetes

e Host your own private Registry

https://hub.docker.com/
https://quay.io/
https://cloud.google.com/container-registry/

Container Registry Commands

Use docker CLI to authenticate

S docker login
S docker logout

S docker login registry.example.com

Container Architecture

Client) (DOCKER_HOST) M

docker pull j§ j Containers — \.\ N

docker run —f

cker build --{---:4: Docker daemon -
do uild » v I | =p2
;] . TP S5

| N, ™ o I

29aq
¢

Run a Container

S docker run alpine echo 'hello world'
S docker ps

What did just happen?

Pulled alpine image from the registry

Created a new container

Allocated a filesystem and mounts a read-write layer
Allocated a network/bridge interface

Sets up an IP address

Executes a process that you specify (/bin/bash)
Captures and provides application output

Run a long-lived Container

S docker run --name hw alpine /bin/sh -c "while true; do echo hello world; sleep 1; done"

S docker ps
S docker logs (-f) hw

Ctrl+C the container
S docker ps
S docker ps -a

Run nginx in a Container

S docker run --rm -p 8080:80 nginx
S docker run --rm -p 8080:80 nginx:1.13
S docker run -d --name nginx -p 8080:80 nginx

S docker run --rm -p 8080:80 -v /tmp/nginx:/usr/share/nginx/html:ro nginx

Dockerfile

Build steps to create an image
Invoke with “Sdocker build .”
Output is and image

Cache image layers

Docker: "don't's

e Don't store data in containers
o All data will be lost

e Don't create large images
o Use alpine

e Don't use only the latest tag
o How would you rollback?

e Don't run more than one process in a single container

12-Factor Apps

https://12factor.net

https://12factor.net/

12 Factors

1. Codebase
Use something like git

2. Dependencies

Use dep, pip, gem, npm etc...

3. Configuration
Use EnvVars, not config files

Backing services

Independent of depended services
Example: DB, MySQL or RDS

Build, release, run

Build a immutable release, use CI/CD
Processes

Apps are just a stateless process
Containers ;-)

12 Factors

Port binding 10.

Expose Apps via Ports
Example: HTTP:80, Postgres:5432

Concurrency
Keep horizontal scaling in mind 1.
Disposability
Fast start time, terminate on SIGTERM 19

Container send SIGTERM ;)

Dev/prod parity
Deploy often, DevOps, run same
containers in dev

Logs

Streams, not files. Write to stdout

Admin processes
Run admin tasks as one-off processes
Example: Run script to migrate DB

I. Codebase
One codebase tracked in revision control, many deploys

Il. Dependencies
Explicitly declare and isolate dependencies

Mll. Config
Store config in the environment

IV. Backing services
Treat backing services as attached resources

V. Build, release, run
Strictly separate build and run stages

Ul. Processes
Execute the app as one or more stateless processes

UIl. Port binding
Export services via port binding

VIIl. Concurrency
Scale out via the process model

IX. Disposability

Maximize robustness with fast startup and graceful shutdown

K. Dev/prod parity
Keep development, staging, and production as similar as

possible

K. Logs

Treat logs as event streams

Kil. Admin processes
Run admin/management tasks as one-off processes

12 Commandments ...

https://12factor.net/codebase
https://12factor.net/dependencies
https://12factor.net/config
https://12factor.net/backing-services
https://12factor.net/build-release-run
https://12factor.net/processes
https://12factor.net/port-binding
https://12factor.net/concurrency
https://12factor.net/disposability
https://12factor.net/dev-prod-parity
https://12factor.net/logs
https://12factor.net/admin-processes

12 Factor - Implications

Portability
Deployability
Scalability
Immutability

| et’'s begin!

$ curl -L
cotbat.zip

unzip cotbat.zip

https://storage.googleapis.com/cotbat/cotbat.zip

github.com/realfake/cotlaader
github.com/realfake/cotbat

Container Registry

You can host your own!
It's just a docker container with BasicAuth

S docker run -d -p 5000:5000 --name registry registry:2

S docker tag project:1.2.3 registry.example.com/project:1.2.3
S docker push registry.example.com/project:1.2.3

