
Send me a mail with your Google
account address.

(You need this to participate)

To:
l.burchard@campus.tu-berlin.de

Preparation

From Beginner to Expert
Kubernetes

Containers

● Lightweight
● Hermetically sealed
● Isolated

● Easily deployable
● Introspectable
● Runnable

Linux processes

● Improves overall developer experience
● Fosters code and component reuse
● Simplifies operations for cloud native applications

A quick recap of Containers

Docker

• Gmail, Web Search, Maps, ...
• MapReduce, batch, ...
• GFS, Colossus, ...
• Even Google’s Cloud Platform:

VMs run in containers!

They launch over 2 billion containers
per week

Everything at Google runs in
containers:

Containers are awesome! Let’s run
lots of them!

Kubernetes

Κυβερνήτης
Greek for "helmsman" or "pilot"

Is Kubernetes Google ?

• Under half the code is now
written by Google

• Stewarded by the Cloud Native
Compute Foundation™

• A Linux Foundation Collaborative
Project™

Start with a Cluster

Laptop to high-availability multi-node cluster
Hosted or self managed
On-Premise or Cloud
Bare Metal or Virtual Machines
Most OSes (inc. RedHat Atomic, Fedora, CentOS)
Or just a bunch of Raspberry PIs
Many options, See Matrix for details

Kubernetes Cluster Matrix: http://bit.ly/1MmhpMW

Declarative
Don‘t micromanage anything!

K8s Master

API Server

Dash Board

scheduler

Kubelet Kubelet Kubelet Kubelet

registry

Container
Registry

etcdControllers

web browsers

kubectl

web browsers

Config
file

Image

DB
(etcd)

K8s Master

API Server

Dash Board

scheduler

Kubelet Kubelet Kubelet Kubelet

DB
(etcd)

Controllers

web browsers

kubectl

web browsers

Config
file

Image

registry

Container
Registry

The atom of scheduling for containers

Represents an application specific logical
host

Hosts containers and volumes

Each has its own routable (no NAT) IP
address

Ephemeral
• Pods are functionally identical and therefore

ephemeral and replaceable
Pod

Web Server

Volume

Consumers

A pod of whales containers

Pods

Pod

Git
Synchronizer

Node.js App
Container

Volume

Consumers
Can be used to group multiple containers &
shared volumes

Containers within a pod are tightly coupled

Shared namespaces
• Containers in a pod share IP, port and IPC

namespaces
• Containers in a pod talk to each other through

localhost

git Repo

Pod Networking (across nodes)

Pods have IPs which are routable
Pods can reach each other without NAT
• Even across nodes

No Brokering of Port Numbers
These are fundamental requirements

Many solutions
• GCE Advanced Routes, AWS Flannel,

Weave, OpenVSwitch, Cloud Provider

10.1.2.0/24

10.1.1.0/24

10.1.1.211 10.1.1.2

10.1.2.106

10.1.3.0/24

10.1.3.4510.1.3.17

10.1.3.0/24

https://goo.gl/jXK36F

Get the material

Pod Pod

frontend

Pod Pod

type = FE

version = v2

type = FE version = v2

● Metadata with semantic meaning

● Membership identifier

● The only Grouping Mechanism

Behavior Benefits
● Allow for intent of many users (e.g. dashboards)

● Build higher level systems …

● Queryable by Selectors

Labels

Dashboard

selector:
type = FE

Dashboard

selector:
version = v2

Pod Pod

frontend

Pod Pod

env = qa env = test

● env = prod

● tier != backend

● env = prod, tier !=backend

Expressions
● env in (test,qa)

● release notin (stable,beta)

● tier

● !tier

Label Expressions

env = prod

Pod

env = prod

Dashboard

selector:
env = notin(prod)

Replication
Controller

Pod

frontend

Pod

frontend

app = demo app = demo app = demo

ReplicaSet

#pods = 3
app = demo
color in (blue,grey)

ReplicaSet

color = blue color = blue color = grey

Behavior Benefits

● Keeps Pods running

● Gives direct control of Pod #s

● Grouped by Label Selector

➔ Recreates Pods, maintains desired state

➔ Fine-grained control for scaling

➔ Standard grouping semantics

Pod Pod Pod

Replication
Controller

Pod

frontend

Pod

frontend

app = demo app = demo app = demo

ReplicaSet

#pods = 3
app = demo
color in (blue,grey)

ReplicaSet

color = blue color = blue color = grey

Pod Pod Pod

selector:
matchLabels:
app: demo

matchExpressions:
- {key: color, operator: In, values:

[blue,grey]}

Supports generalized Selectors

Replica Set

Replica Set
- Name = “backend”
- Selector = {“name”: “backend”}
- Template = { ... }
- NumReplicas = 4

API Server

3

Start 1
more

OK 4

How
many?

How
many?

Canonical example of control
loops

Have one job: ensure N copies of
a pod
• if too few, start new ones
• if too many, kill some
• group == selector

Replicated pods are replaceable
• No implied order or identity

Client

Pod

Container

Pod

Container

Pod

Container

A logical grouping of pods that perform the
same function (the Service’s endpoints)
• grouped by label selector

Load balances incoming requests across
constituent pods

Choice of pod is random but supports session
affinity (ClientIP)

Gets a stable virtual IP and port
• also get a DNS name

Services

Service
Label
selector:
type = FE

VIP

type = FE type = FE type = FE

Service

Label se

Service
name = frontend

Label selector:
type = BE

Replication
Controller Pod

frontend

Pod

version= v1 version = v1

type = FE type = FE

Scaling Example

Pod

frontend

Pod

version = v1

type = FE

Pod Pod

ReplicaSet
version = v1
type = FE
#pods = 4

version = v1

type = FE

Service

Label
selectors:
version =

1.0

Service
name = backend

Label selector:
type = BE

Replication
Controller Pod Pod

frontend

Pod

version= v1 version = v1

ReplicaSet
version = v1
type = BE
#pods = 2

type = BE type = BE

Canary

Replication
Controller
ReplicaSet
version = v2
type = BE
#pods = 1

Pod

frontend

Pod

version = v2

type = BE

Reliable Deployments

Reliable mechanism for creating, updating
and managing Pods

Deployment manages replica changes,
including rolling updates and scaling

Edit Deployment configurations in place
with kubectl edit or kubectl apply

Managed rollouts and rollbacks

Deployments: Updates as a Service

...

Rollout

API

DeploymentDeployment

Create frontend-1234567

Deployment

Create frontend-1234567

Scale frontend-1234567 up to 1

Deployment

Create frontend-1234567

Scale frontend-1234567 up to 1

Scale frontend-7654321 down to 0

Pod Pod

frontend

Pod

version = v1

ReplicaSet

frontend-1234567
version = v2
type = BE
#pods = 0

show: version = v2

ReplicaSet

frontend-7654321
version = v1
type = BE
#pods = 2

version: v2

ReplicaSet

frontend-7654321
version: v1
type: BE
#pods = 0

version: v1

ReplicaSet

frontend-1234567
version = v2
type = BE
#pods = 1

show: version = v2

ReplicaSet

frontend-1234567
version: v2
type: BE
#pods = 2

type = BE type = BE

Pod

version: v2

type = BE

Serv
ice

Labe

be-svc

Deployment

Create frontend-1234567

Scale frontend-1234567 up to 1

Scale frontend-7654321 down to 0

Scale frontend-1234567 up to 2

kubectl edit
deployment ...

Pod Horizontal Autoscaling

Replication
Controller Pod

frontend

Pod

name=locust name=locust

ReplicaSet
name=locust
role=worker
#pods = 1

Pod

frontend

Pod

name=locust

ReplicaSet
name=locust
role=worker
#pods = 2

Pod Pod

name=locust

Scale
CPU Target% = 50 Heapster

role=worker role=worker role=worker role=worker

ReplicaSet

name=locust
role=worker
#pods = 4

70% CPU 40% CPU

> 50% CPU< 50% CPU

...

Run-to-completion, as opposed to
run-forever
• Express parallelism vs. required

completions
• Workflow: restart on failure
• Build/test: don’t restart on failure

Aggregates success/failure counts

Built for batch and big-data work

Jobs

Goal: Give pods time to clean up
• finish in-flight operations
• log state
• flush to disk
• 30 seconds by default

Catch SIGTERM, cleanup, exit ASAP

Pod status “Terminating”

Declarative: ‘DELETE’ appears as an
object field in the API

Graceful Termination

User

Zone A

Zone C

Zone B

Master

Goal: zone-fault tolerance for applications

Zero API changes relative to kubernetes
● Create services, replication controllers, etc.

exactly as usual

Nodes and PersistentVolumes are labelled
with their availability zone
● Fully automatic for GKE, GCE, AWS
● Manual for on-premise and other cloud

providers (for now)

Multi-Zone Clusters

Scheduling

K8s Master

API Server

Dash Board

scheduler

Kubelet Kubelet Kubelet Kubelet

Container
Registry

etcdControllers

web browsers

kubectl

web browsers

Config
file

Image

Kubernetes without a Scheduler

K8s Master

API Server

Dashboard

k8s-minion-xyz

poddy

Kubelet

k8s-minion-abc

Kubelet

k8s-minion-fig

Kubelet

k8s-minion-cat

Kubelet

etcd

apiVersion: v1
kind: Pod
metadata:

name: poddy
spec:

nodeName: k8s-minion-xyz
containers:
- name: nginx

image: nginx
ports:
- containerPort: 80

Controllers

K8s Master

API Server

Dashboard

scheduler

Kubelet Kubelet Kubelet Kubelet

etcdControllers
apiVersion: v1
kind: Pod
metadata:

name: poddy
spec:

containers:
- name: nginx

image: nginx
ports:
- containerPort: 80

Kubernetes with a Scheduler
Which
Node?

Scheduling Process:
● Identify Potential Nodes
● Rank Potential Nodes
● Schedule to Highest

Ranked Node

Kubelet

A Resource is something that can be
requested, allocated, or consumed to/by a
pod or a container

CPU: Specified in units of Cores,
what that is depends on the provider

Memory: Specified in units of Bytes

CPU is Compressible (i.e. it has a rate and
can be throttled)

Memory is Incompressible, it can’t be
throttled

Kubernetes Resources

Requests and Limits

Request:
• how much of a resource you are asking to use, with a strong

guarantee of availability
• scheduler will not over-commit requests

Limit:
• max amount of a resource you can access

Conclusion:
• Usage > Request: resources might be available
• Usage > Limit: throttled or killed

Resource based Scheduling
Provide QoS for Scheduled Pods

Per Container CPU and Memory requirements

Specified as Request and Limit

Best Effort (Request == 0)

Burstable (Request < Limit)

Guaranteed (Request == Limit)

Best Effort Scheduling for low priority workloads improves
Utilization at Google by 20%

...
spec:
containers:
- name: locust
image: gcr.io/rabbit-skateboard/guestbook:gdg-rtv
resources:
requests:
memory: "300Mi"
cpu: "100m"

limits:
memory: "300Mi"
cpu: "100m"

my-controller.yaml

Resource based Scheduling

For a Pod to be scheduled the amount of CPU it Requests must be
available on a single node
If it Requests 0 CPU it can always be scheduled

CPU Resource: Requests vs Limits

Scheduling Pods: Nodes

K8s Node

Kubelet

2Core
2GB

disk = ssd

Resources

LabelsDisks

Nodes may not be heterogeneous, they
can differ in important ways:

● CPU and Memory Resources

● Attached Disks

● Specific Hardware

Location may also be important

What CPU and Memory Resources does it
need?

Can also be used as a measure of priority

Pod Scheduling: Identifying Potential Nodes

K8s Node

Kubelet Proxy

CPU

Mem

What Resources does it need?

What Disk(s) does it need (GCE PD and
EBS) and can it/they be mounted without
conflict?

Note: 1.1 limits to a single volume mount
per node

Pod Scheduling: Finding Potential Nodes

K8s Node

Kubelet Proxy

CPU

Mem

What Resources does it need?

What Disk(s) does it need?

What node(s) can it run on (Node
Selector)?

Pod Scheduling: Identifying Potential Nodes

K8s Node

Kubelet Proxy

CPU

Mem

disktype = ssd

kubectl label nodes node-3
disktype=ssd
(pod) spec:

nodeSelector:
disktype: ssd

nodeAffinity

{
"nodeAffinity": {
"requiredDuringSchedulingIgnoredDuringExecution": {
"nodeSelectorTerms": [
{
"matchExpressions": [
{
"key": "beta.kubernetes.io/instance-type",
"operator": "In",
"values": ["n1-highmem-2", "n1-highmem-4"]

}
]

}
]

}
}

}

http://kubernetes.github.io/docs/user-guide/node-selection/

Implemented through Annotations in 1.5,

Can be ‘Required’ or ‘Preferred’ during
scheduling

In future can can be ‘Required’ during
execution (Node labels can change)

Will eventually replace NodeSelector

If you specify both nodeSelector and
nodeAffinity, both must be satisfied

Prefer node with most free resource
left after the pod is deployed

Prefer nodes with the specified label

Minimise number of Pods from the
same service on the same node

CPU and Memory is balanced after
the Pod is deployed [Default]

Pod Scheduling: Ranking Potential Nodes

Node2

Node3

Node1

Extending the Scheduler
1. Add rules to the scheduler and

recompile

2. Run your own scheduler process
instead of, or as well as, the
Kubernetes scheduler

3. Implement a "scheduler extender"
that the Kubernetes scheduler
calls out to as a final pass when
making scheduling decisions

Admission Control
Admission Control (AC) enforces certain conditions,
before a request is accepted by the API Server

AC functionality implemented as plugins which are
executed in the sequence they are specified

AC is performed after AuthN (AuthenticatioN) checks

Enforcement usually results in either

● A Request denial

● Mutation of the Request Resource

● Mutation of related Resources

K8s Master

API
Server

scheduler

ControllersAd
m

is
si

on
 C

on
tro

l

NamespaceLifecycle
Enforces that a Namespace that is undergoing termination cannot have new objects created in it, and ensures that
requests in a non-existant Namespace are rejected

LimitRanger
Observes the incoming request and ensures that it does not violate any of the constraints enumerated in the
LimitRange object in a Namespace

ServiceAccount
Implements automation for serviceAccounts (RBAC)

ResourceQuota
Observes the incoming request and ensures that it does not violate any of the constraints enumerated in the
ResourceQuota object in a Namespace.

Admission Control Examples

Managing State

I still have questions about state!

In a cluster of ephemeral containers
Application state must exist outside of the container

Database

Bound to the Pod that encloses it
Look like Directories to Containers
What and where they are determined
by Volume Type
Many Volume options

Volumes

Pod
• EmptyDir
• HostPath
• nfs (and similar services)
• Cloud Provider Block Storage

Clai
m

A higher-level storage abstraction
• insulation from any one cloud environment

Admin provisions them, users claim them
• auto-provisioning

Independent lifetime and fate from consumers
• lives until user is done with it
• can be handed-off between pods

Dynamically “scheduled” and managed, like nodes and
pods

PersistentVolumes

Outside the Cluster

App Pod App Pod App Pod

App Pod App Pod App Pod

App Pod App Pod App Pod

e.g.: MySQL managed
by DBAs or managed
cloud services

Database

Adapt to run in the Cluster

Database

App Pod App Pod App Pod

App Pod App Pod App Pod

App Pod App Pod App Pod

e.g.: MySQL runs in a
pod and mounts a
filesystem provided
by the cluster

Cluster Native

App Pod App Pod App Pod

App Pod App Pod App Pod

App Pod App Pod App Pod

ex: run Cassandra or
Riak inside the cluster

Cluster native - MySQL on Vitess

Open source MySQL scaling solution
Vitess has been serving all YouTube
database traffic since 2011
Replication, dynamic sharding,
caching and more
Designed for a distributed,
containerized world
Kubernetes configs included

http://vitess.io/

Config
Map

Pod
Spec

App Pod

Node

Goal: manage app configuration
• ...without making overly-brittle container

images

12-factor says config comes from the environment
● Kubernetes is the environment

Manage config via the Kubernetes API

Inject config as a virtual volume into your Pods
● late-binding, live-updated (atomic)
● also available as env vars

ConfigMaps

Secrets

Goal: grant a pod access to a secured something?
● don’t put secrets in the container image!

12-factor says: config comes from the environment
● Kubernetes is the environment

Manage secrets via the Kubernetes API
Inject them as virtual volumes into Pods
● late-binding
● tmpfs - never touches disk

Secret

App Pod

Node

Pod
Spec

Ingress

Ingress for HTTP Load Balancing [Beta]

Pod Pod Pod

Service
name: bar

24.4.5.6

Pod Pod Pod

Service
name: foo

24.1.2.3

Ingress for HTTP Load Balancing [Beta]

api.company.com
24.7.8.9

Pod Pod Pod

Service
name: bar

10.0.0.3

Pod Pod Pod

Service
name: foo

10.0.0.1

http://api.company.com/foo http://api.company.com/bar

Ingress API: Simple fanout
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: test

spec:
rules:
- host: k8s.io
http:
paths:
- path: /foo
backend:
serviceName: fooSvc
servicePort: 80

- path: /bar
backend:
serviceName: barSvc
servicePort: 80

http://k8s.io/foo http://k8s.io/bar

Service
name: foo

10.0.0.1

Service
name: bar

10.0.0.3

Ingress API: Name based virtual hosting
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: test

spec:
rules:
- host: k8s.io
http:
paths:
- backend:

serviceName: k8sSvc
servicePort: 80

- host: j7a.io
http:
paths:
- backend:

serviceName: j7aSvc
servicePort: 80

http://k8s.io/* http://j7a.io/*

Service
name: foo

10.0.0.1

Service
name: bar

10.0.0.3

URL Map

Ingress API
Services are assumed L3/L4

Lots of apps want HTTP/HTTPS

Ingress maps incoming traffic to backend
services

• by HTTP host headers
• by HTTP URL paths

HAProxy, NGINX, AWS and GCE
implementations in progress

Now with SSL!

Service
name: foo

10.0.0.1

Service
name: bar

10.0.0.3

Service
name: bar

10.0.0.3

Client

Ensure that a replica of a given pod runs
on every node or a subset nodes

Like an RC but targets a set of nodes by
selector

Examples:

● Agent based services: DataDog,
Sysdig, etc

● Daemon process: Storage, Logs,
Monitoring Node

Daemonsets

Node Node

Pod
Spec

Network Policy

Describe the DAG of your app, enforce it in the
network

Restrict Pod-to-Pod traffic or across
Namespaces

Designed by the network SIG
• implementations for Calico, OpenShift,

Romana, OpenContrail (so far)

Status: beta in v1.6

Node Drain

Goal: Evacuate a node for maintenance
• e.g. kernel upgrades

CLI: kubectl drain
• disallow scheduling
• allow grace period for pods to terminate
• kill pods

When done: kubectl uncordon
• the node rejoins the cluster

Network Plugins

Introduced in Kubernetes v1.0

Uses CNI
• Simple exec interface
• Not using Docker libnetwork

• but can defer to Docker for networking

Cluster admins can customize their installs
• DHCP, MACVLAN, Flannel, custom

net

Plugin

Plugin

Plugin

● Cron (scheduled jobs)
● Custom metrics
● “Apply” a config (more declarative)
● Machine-generated Go clients (less

deps!)
● Volume usage stats
● Multi-scheduler support
● Node affinity and anti-affinity
● More volume types
● Out-of-process volume plugin
● GUI
● Pod hostname and FQDN

More New and Coming Soon

● Better isolation
● Multi-cluster federation
● API federation
● Private Docker registry
● External DNS integration
● Volume classes and provisioning
● DIY Cloud Provider plugins
● More container runtimes

(e.g. Rkt, Hyper)
● Better auth{n,z}
● Big data integrations
● Device scheduling (e.g. GPUs)
● …

Cluster Add-Ons

Run cAdvisor on each node (in kubelet)
• gather stats from all containers
• export via REST

Run Heapster as a pod in the cluster
• just another pod, no special access
• aggregate stats

Run Influx and Grafana in the cluster
• more pods
• alternately: store in Google Cloud Monitoring

Or plug in your own!
• e.g. Google Cloud Monitoring

Monitoring

Run fluentd as a pod on each node
• gather logs from all containers
• export to elasticsearch

Run Elasticsearch as a pod in the cluster
• just another pod, no special access
• aggregate logs

Run Kibana in the cluster
• yet another pod

Or plug in your own!
• e.g. Google Cloud Logging

Logging

Run CoreDNS as a pod in the cluster
• Use etcd as a backend
• Successor of SkyDNS

Strictly optional, but practically required
• LOTS of things depend on it (SkyDNS)
• Probably will become more integrated

Can do
• DNS(SEC)
• Caching
• Health Checks

Or plug in your own!

DNS

Cloud providers: Azure, VMware, Openstack, Rackspace,

Distros: Kubermatic, CoreOS Tectonic, RedHat Atomic

PaaS: RedHat OpenShift, Deis, Rancher, WSO2, Gondor/Kel, Apcera

CD: Fabric8, Shippable, CloudBees, Solano

Deployment: Kumoru, Redspread, Spinnaker

Package managers: Helm, KPM

Monitoring: Prometheus, Sysdig, Datadog

Networking: Weaveworks, Tigera, OpenContrail

Storage: NetApp, ClusterHQ

Appliances: Redapt, Diamante

Hitting a ~3 month release cadence

Kubernetes a healthy eco system

78

Kubernetes is Open

https://kubernetes.io
Code: github.com/kubernetes/kubernetes
Chat: slack.k8s.io
Twitter: @kubernetesio

open community

open design

open source

open to ideas

Kubermatic Container Engine

Managed Kubernetes

Manages Kubernetes master uptime

Cluster Resize

Managed Updates

Supports Different Cloud providers AWS,
DigitalOcean, BareMetal

Also On-premises

Contact:
luk@loodse.com henrik@loodse.com
@lukburchard @mr_inc0mpetent
realfake mrIncompetent

+49 1590 4099172
www.loodse.com

Thank you for your attention!

Your training Virtual Machine

Replication
Controller Pod Pod

frontend

Pod

frontend

Pod Pod
Replication
Controller

#pods = 1
version = v2version= v1 version = v1 version = v2

Replication
Controller

#pods = 2
version = v1

Behavior Benefits

● Keeps Pods running

● Gives direct control of Pods

● Grouped by Label Selector

➔ Recreates Pods, maintains desired state

➔ Fine-grained control for scaling

➔ Standard grouping semantics

Replication Controllers

